scispace - formally typeset
Search or ask a question
Author

Olivia Spleiss

Bio: Olivia Spleiss is an academic researcher from Hoffmann-La Roche. The author has contributed to research in topics: Vemurafenib & Melanoma. The author has an hindex of 14, co-authored 23 publications receiving 1918 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors performed a molecular analysis to identify oncogenic mutations (HRAS, KRAS, NRAS, CDKN2A, and TP53) in the lesions from patients treated with the BRAF inhibitor vemurafenib.
Abstract: Background Cutaneous squamous-cell carcinomas and keratoacanthomas are common findings in patients treated with BRAF inhibitors. Methods We performed a molecular analysis to identify oncogenic mutations (HRAS, KRAS, NRAS, CDKN2A, and TP53) in the lesions from patients treated with the BRAF inhibitor vemurafenib. An analysis of an independent validation set and functional studies with BRAF inhibitors in the presence of the prevalent RAS mutation was also performed. Results Among 21 tumor samples, 13 had RAS mutations (12 in HRAS). In a validation set of 14 samples, 8 had RAS mutations (4 in HRAS). Thus, 60% (21 of 35) of the specimens harbored RAS mutations, the most prevalent being HRAS Q61L. Increased proliferation of HRAS Q61L–mutant cell lines exposed to vemurafenib was associated with mitogen-activated protein kinase (MAPK)–pathway signaling and activation of ERK-mediated transcription. In a mouse model of HRAS Q61L–mediated skin carcinogenesis, the vemurafenib analogue PLX4720 was not an initiator or...

937 citations

Journal ArticleDOI
TL;DR: Vemurafenib inhibits tumor proliferation and oncogenic BRAF signaling through the MAPK pathway and inhibition downstream of BRAF should help to overcome acquired resistance.
Abstract: PURPOSE To assess pharmacodynamic effects and intrinsic and acquired resistance mechanisms of the BRAF inhibitor vemurafenib in BRAF(V600)-mutant melanoma, leading to an understanding of the mechanism of action of vemurafenib and ultimately to optimization of metastatic melanoma therapy. METHODS In the phase II clinical study NP22657 (BRIM-2), patients received oral doses of vemurafenib (960 mg twice per day). Serial biopsies were collected to study changes in mitogen-activated protein kinase (MAPK) signaling, cell-cycle progression, and factors causing intrinsic or acquired resistance by immunohistochemistry, DNA sequencing, or somatic mutation profiling. Results Vemurafenib inhibited MAPK signaling and cell-cycle progression. An association between the decrease in extracellular signal-related kinase (ERK) phosphorylation and objective response was observed in paired biopsies (n = 22; P = .013). Low expression of phosphatase and tensin homolog showed a modest association with lower response. Baseline mutations in MEK1(P124) coexisting with BRAF(V600) were noted in seven of 92 samples; their presence did not preclude objective tumor responses. Acquired resistance to vemurafenib associated with reactivation of MAPK signaling as observed by elevated ERK1/2 phosphorylation levels in progressive lesions and the appearance of secondary NRAS(Q61) mutations or MEK1(Q56P) or MEK1(E203K) mutations. These two activating MEK1 mutations had not previously been observed in vivo in biopsies of progressive melanoma tumors. CONCLUSION Vemurafenib inhibits tumor proliferation and oncogenic BRAF signaling through the MAPK pathway. Acquired resistance results primarily from MAPK reactivation driven by the appearance of secondary mutations in NRAS and MEK1 in subsets of patients. The data suggest that inhibition downstream of BRAF should help to overcome acquired resistance.

363 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the high prevalence of TP53 mutations in triple negative breast cancer (TNBC) to compare ctDNA and CTC detection rates and prognostic value in metastatic TNBC patients.
Abstract: Circulating tumor DNA (ctDNA) is a new circulating tumor biomarker which might be used as a prognostic biomarker in a way similar to circulating tumor cells (CTCs). Here, we used the high prevalence of TP53 mutations in triple negative breast cancer (TNBC) to compare ctDNA and CTC detection rates and prognostic value in metastatic TNBC patients. Forty patients were enrolled before starting a new line of treatment. TP53 mutations were characterized in archived tumor tissues and in plasma DNA using two next generation sequencing (NGS) platforms in parallel. Archived tumor tissue was sequenced successfully for 31/40 patients. TP53 mutations were found in 26/31 (84%) of tumor samples. The same mutation was detected in the matched plasma of 21/26 (81%) patients with an additional mutation found only in the plasma for one patient. Mutated allele fractions ranged from 2 to 70% (median 5%). The observed correlation between the two NGS approaches (R2 = 0.903) suggested that ctDNA levels data were quantitative. Among the 27 patients with TP53 mutations, CTC count was ≥1 in 19 patients (70%) and ≥5 in 14 patients (52%). ctDNA levels had no prognostic impact on time to progression (TTP) or overall survival (OS), whereas CTC numbers were correlated with OS (p = 0.04) and marginally with TTP (p = 0.06). Performance status and elevated LDH also had significant prognostic impact. Here, absence of prognostic impact of baseline ctDNA level suggests that mechanisms of ctDNA release in metastatic TNBC may involve, beyond tumor burden, biological features that do not dramatically affect patient outcome.

134 citations

Journal ArticleDOI
TL;DR: Variation in genes of immune response and pharmacodynamic/pharmacokinetic relevance may be important in understanding acute rejection after renal transplant.
Abstract: Renal transplant outcomes exhibit large inter-individual variability, possibly on account of genetic variation in immune-response mediators and genes influencing the pharmacodynamics/pharmacokinetics of immunosuppressants. We examined 21 polymorphisms from 10 genes in 237 de novo renal transplant recipients participating in an open-label, multicenter study [Cyclosporine Avoidance Eliminates Serious Adverse Renal-toxicity (CAESAR)] investigating renal function and biopsy-proven acute rejection (BPAR) with different cyclosporine A regimens and mycophenolate mofetil. Genes were selected for their immune response and pharmacodynamic/pharmacokinetic relevance and were tested for association with BPAR. Four polymorphisms were significantly associated with BPAR. The ABCB1 2677T allele tripled the odds of developing BPAR (OR: 3.16, 95% CI [1.50-6.67]; P = 0.003), as did the presence of at least one IMPDH2 3757C allele (OR: 3.39, 95% CI [1.42-8.09]; P = 0.006). BPAR was almost fivefold more likely in patients homozygous for IL-10 -592A (OR: 4.71, 95% CI [1.52-14.55]; P = 0.007) and twice as likely in patients with at least one A allele of TNF-alpha G-308A (OR: 2.18, 95% CI [1.08-4.41]; P = 0.029). There were no statistically significant interactions between polymorphisms, or the different treatment regimens. Variation in genes of immune response and pharmacodynamic/pharmacokinetic relevance may be important in understanding acute rejection after renal transplant. (Less)

115 citations

Journal ArticleDOI
TL;DR: A selection of case studies from the first 5 years of the US Food and Drug Administration's voluntary exploratory data submission programme, which also involves collaboration with the European Medicines Agency, are discussed, and general lessons are highlighted.
Abstract: Heterogeneity in the underlying mechanisms of disease processes and inter-patient variability in drug responses are major challenges in drug development. To address these challenges, biomarker strategies based on a range of platforms, such as microarray gene-expression technologies, are increasingly being applied to elucidate these sources of variability and thereby potentially increase drug development success rates. With the aim of enhancing understanding of the regulatory significance of such biomarker data by regulators and sponsors, the US Food and Drug Administration initiated a programme in 2004 to allow sponsors to submit exploratory genomic data voluntarily, without immediate regulatory impact. In this article, a selection of case studies from the first 5 years of this programme - which is now known as the voluntary exploratory data submission programme, and also involves collaboration with the European Medicines Agency - are discussed, and general lessons are highlighted.

89 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: Dabrafenib and trametinib were safely combined at full monotherapy doses, and the rate of pyrexia was increased with combination therapy, whereas the rates of proliferative skin lesions was nonsignificantly reduced.
Abstract: Dose-limiting toxic effects were infrequently observed in patients receiving combination therapy with 150 mg of da braf e nib and 2 mg of tra me ti nib (combination 150/2). Cutaneous squamous-cell carcinoma was seen in 7% of patients receiving combination 150/2 and in 19% receiving monotherapy (P = 0.09), whereas pyrexia was more common in the combination 150/2 group than in the monotherapy group (71% vs. 26%). Median progression-free survival in the combination 150/2 group was 9.4 months, as compared with 5.8 months in the monotherapy group (hazard ratio for progression or death, 0.39; 95% confidence interval, 0.25 to 0.62; P<0.001). The rate of complete or partial response with combination 150/2 therapy was 76%, as compared with 54% with monotherapy (P = 0.03). Conclusions Da braf e nib and tra me ti nib were safely combined at full monotherapy doses. The rate of pyrexia was increased with combination therapy, whereas the rate of proliferative skin lesions was nonsignificantly reduced. Progression-free survival was significantly improved. (Funded by GlaxoSmithKline; ClinicalTrials.gov number, NCT01072175.)

2,457 citations

Journal ArticleDOI
TL;DR: Approaches used for drug repurposing (also known as drug repositioning) are presented, the challenges faced by the repurpose community are discussed, and innovative ways by which these challenges could be addressed are recommended to help realize the full potential of drugRepurposing.
Abstract: Given the high attrition rates, substantial costs and slow pace of new drug discovery and development, repurposing of 'old' drugs to treat both common and rare diseases is increasingly becoming an attractive proposition because it involves the use of de-risked compounds, with potentially lower overall development costs and shorter development timelines. Various data-driven and experimental approaches have been suggested for the identification of repurposable drug candidates; however, there are also major technological and regulatory challenges that need to be addressed. In this Review, we present approaches used for drug repurposing (also known as drug repositioning), discuss the challenges faced by the repurposing community and recommend innovative ways by which these challenges could be addressed to help realize the full potential of drug repurposing.

2,365 citations

Journal ArticleDOI
TL;DR: Dabrafenib plus trametinib, as compared with vemurafenib monotherapy, significantly improved overall survival in previously untreated patients with metastatic melanoma with BRAF V600E or V600K mutations, without increased overall toxicity.
Abstract: Background The BRAF inhibitors vemurafenib and dabrafenib have shown efficacy as monotherapies in patients with previously untreated metastatic melanoma with BRAF V600E or V600K mutations. Combining dabrafenib and the MEK inhibitor trametinib, as compared with dabrafenib alone, enhanced antitumor activity in this population of patients. Methods In this open-label, phase 3 trial, we randomly assigned 704 patients with metastatic melanoma with a BRAF V600 mutation to receive either a combination of dabrafenib (150 mg twice daily) and trametinib (2 mg once daily) or vemurafenib (960 mg twice daily) orally as first-line therapy. The primary end point was overall survival. Results At the preplanned interim overall survival analysis, which was performed after 77% of the total number of expected events occurred, the overall survival rate at 12 months was 72% (95% confidence interval [CI], 67 to 77) in the combination-therapy group and 65% (95% CI, 59 to 70) in the vemurafenib group (hazard ratio for death in the combination-therapy group, 0.69; 95% CI, 0.53 to 0.89; P = 0.005). The prespecified interim stopping boundary was crossed, and the study was stopped for efficacy in July 2014. Median progression-free survival was 11.4 months in the combinationtherapy group and 7.3 months in the vemurafenib group (hazard ratio, 0.56; 95% CI, 0.46 to 0.69; P<0.001). The objective response rate was 64% in the combinationtherapy group and 51% in the vemurafenib group (P<0.001). Rates of severe adverse events and study-drug discontinuations were similar in the two groups. Cutaneous squamous-cell carcinoma and keratoacanthoma occurred in 1% of patients in the combination-therapy group and 18% of those in the vemurafenib group. Conclusions Dabrafenib plus trametinib, as compared with vemurafenib monotherapy, significantly improved overall survival in previously untreated patients with metastatic melanoma with BRAF V600E or V600K mutations, without increased overall toxicity. (Funded by GlaxoSmithKline; ClinicalTrials.gov number, NCT01597908.)

2,144 citations

Journal ArticleDOI
TL;DR: TIMER2.0 (http://timer.cistrome.org/) provides more robust estimation of immune infiltration levels for The Cancer Genome Atlas (TCGA) or user-provided tumor profiles using six state-of-the-art algorithms.
Abstract: Tumor progression and the efficacy of immunotherapy are strongly influenced by the composition and abundance of immune cells in the tumor microenvironment. Due to the limitations of direct measurement methods, computational algorithms are often used to infer immune cell composition from bulk tumor transcriptome profiles. These estimated tumor immune infiltrate populations have been associated with genomic and transcriptomic changes in the tumors, providing insight into tumor-immune interactions. However, such investigations on large-scale public data remain challenging. To lower the barriers for the analysis of complex tumor-immune interactions, we significantly improved our previous web platform TIMER. Instead of just using one algorithm, TIMER2.0 (http://timer.cistrome.org/) provides more robust estimation of immune infiltration levels for The Cancer Genome Atlas (TCGA) or user-provided tumor profiles using six state-of-the-art algorithms. TIMER2.0 provides four modules for investigating the associations between immune infiltrates and genetic or clinical features, and four modules for exploring cancer-related associations in the TCGA cohorts. Each module can generate a functional heatmap table, enabling the user to easily identify significant associations in multiple cancer types simultaneously. Overall, the TIMER2.0 web server provides comprehensive analysis and visualization functions of tumor infiltrating immune cells.

1,992 citations