scispace - formally typeset
Search or ask a question
Author

Olivier Cappé

Bio: Olivier Cappé is an academic researcher from École Normale Supérieure. The author has contributed to research in topics: Markov chain Monte Carlo & Expectation–maximization algorithm. The author has an hindex of 47, co-authored 148 publications receiving 12119 citations. Previous affiliations of Olivier Cappé include Télécom ParisTech & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: The design of a new methodology for representing the relationship between two sets of spectral envelopes and the proposed transform greatly improves the quality and naturalness of the converted speech signals compared with previous proposed conversion methods.
Abstract: Voice conversion, as considered in this paper, is defined as modifying the speech signal of one speaker (source speaker) so that it sounds as if it had been pronounced by a different speaker (target speaker). Our contribution includes the design of a new methodology for representing the relationship between two sets of spectral envelopes. The proposed method is based on the use of a Gaussian mixture model of the source speaker spectral envelopes. The conversion itself is represented by a continuous parametric function which takes into account the probabilistic classification provided by the mixture model. The parameters of the conversion function are estimated by least squares optimization on the training data. This conversion method is implemented in the context of the HNM (harmonic+noise model) system, which allows high-quality modifications of speech signals. Compared to earlier methods based on vector quantization, the proposed conversion scheme results in a much better match between the converted envelopes and the target envelopes. Evaluation by objective tests and formal listening tests shows that the proposed transform greatly improves the quality and naturalness of the converted speech signals compared with previous proposed conversion methods.

1,109 citations

Journal Article
TL;DR: This work introduces generic notions of complexity for the two dominant frameworks considered in the literature: fixed-budget and fixed-confidence settings, and provides the first known distribution-dependent lower bound on the complexity that involves information-theoretic quantities and holds when m ≥ 1 under general assumptions.
Abstract: The stochastic multi-armed bandit model is a simple abstraction that has proven useful in many different contexts in statistics and machine learning. Whereas the achievable limit in terms of regret minimization is now well known, our aim is to contribute to a better understanding of the performance in terms of identifying the m best arms. We introduce generic notions of complexity for the two dominant frameworks considered in the literature: fixed-budget and fixed-confidence settings. In the fixed-confidence setting, we provide the first known distribution-dependent lower bound on the complexity that involves information-theoretic quantities and holds when m ≥ 1 under general assumptions. In the specific case of two armed-bandits, we derive refined lower bounds in both the fixedcon fidence and fixed-budget settings, along with matching algorithms for Gaussian and Bernoulli bandit models. These results show in particular that the complexity of the fixed-budget setting may be smaller than the complexity of the fixed-confidence setting, contradicting the familiar behavior observed when testing fully specified alternatives. In addition, we also provide improved sequential stopping rules that have guaranteed error probabilities and shorter average running times. The proofs rely on two technical results that are of independent interest: a deviation lemma for self-normalized sums (Lemma 7) and a novel change of measure inequality for bandit models (Lemma 1).

1,061 citations

Journal ArticleDOI
02 Jul 2007
TL;DR: This paper is intended to serve both as an introduction to SMC algorithms for nonspecialists and as a reference to recent contributions in domains where the techniques are still under significant development, including smoothing, estimation of fixed parameters and use of SMC methods beyond the standard filtering contexts.
Abstract: It is now over a decade since the pioneering contribution of Gordon (1993), which is commonly regarded as the first instance of modern sequential Monte Carlo (SMC) approaches. Initially focussed on applications to tracking and vision, these techniques are now very widespread and have had a significant impact in virtually all areas of signal and image processing concerned with Bayesian dynamical models. This paper is intended to serve both as an introduction to SMC algorithms for nonspecialists and as a reference to recent contributions in domains where the techniques are still under significant development, including smoothing, estimation of fixed parameters and use of SMC methods beyond the standard filtering contexts.

1,023 citations

Posted Content
TL;DR: In this paper, a comparison of various resampling approaches that have been proposed in the literature on particle filtering is made, and it is shown using simple arguments that the so-called residual and stratified methods do yield an improvement over the basic multinomial re-sampling approach.
Abstract: This contribution is devoted to the comparison of various resampling approaches that have been proposed in the literature on particle filtering. It is first shown using simple arguments that the so-called residual and stratified methods do yield an improvement over the basic multinomial resampling approach. A simple counter-example showing that this property does not hold true for systematic resampling is given. Finally, some results on the large-sample behavior of the simple bootstrap filter algorithm are given. In particular, a central limit theorem is established for the case where resampling is performed using the residual approach.

832 citations

Proceedings ArticleDOI
24 Oct 2005
TL;DR: It is first shown using simple arguments that the so-called residual and stratified methods do yield an improvement over the basic multinomial resampling approach, and a central limit theorem is established for the case where resamplings is performed using the residual approach.
Abstract: This contribution is devoted to the comparison of various resampling approaches that have been proposed in the literature on particle filtering. It is first shown using simple arguments that the so-called residual and stratified methods do yield an improvement over the basic multinomial resampling approach. A simple counter-example showing that this property does not hold true for systematic resampling is given. Finally, some results on the large-sample behavior of the simple bootstrap filter algorithm are given. In particular, a central limit theorem is established for the case where resampling is performed using the residual approach.

692 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations