Author
Olivier Grisel
Other affiliations: French Institute for Research in Computer Science and Automation
Bio: Olivier Grisel is an academic researcher from Université Paris-Saclay. The author has contributed to research in topic(s): Python (programming language) & Cognition. The author has an hindex of 11, co-authored 19 publication(s) receiving 63822 citation(s). Previous affiliations of Olivier Grisel include French Institute for Research in Computer Science and Automation.
Papers
More filters
Journal Article•
TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.
33,540 citations
Posted Content•
TL;DR: Scikit-learn as mentioned in this paper is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from this http URL.
28,898 citations
Posted Content•
TL;DR: Scikit-learn as mentioned in this paper is a machine learning library written in Python, which is designed to be simple and efficient, accessible to non-experts, and reusable in various contexts.
Abstract: Scikit-learn is an increasingly popular machine learning li- brary. Written in Python, it is designed to be simple and efficient, accessible to non-experts, and reusable in various contexts. In this paper, we present and discuss our design choices for the application programming interface (API) of the project. In particular, we describe the simple and elegant interface shared by all learning and processing units in the library and then discuss its advantages in terms of composition and reusability. The paper also comments on implementation details specific to the Python ecosystem and analyzes obstacles faced by users and developers of the library.
601 citations
Proceedings Article•
23 Sep 2013TL;DR: Scikit-learn as discussed by the authors is a machine learning library written in Python, which is designed to be simple and efficient, accessible to non-experts, and reusable in various contexts.
Abstract: Scikit-learn is an increasingly popular machine learning li- brary. Written in Python, it is designed to be simple and efficient, accessible to non-experts, and reusable in various contexts. In this paper, we present and discuss our design choices for the application programming interface (API) of the project. In particular, we describe the simple and elegant interface shared by all learning and processing units in the library and then discuss its advantages in terms of composition and reusability. The paper also comments on implementation details specific to the Python ecosystem and analyzes obstacles faced by users and developers of the library.
335 citations
01 Jun 2015
TL;DR: A quick introduction to scikit-learn as well as to machine-learning basics are given.
Abstract: Machine learning is a pervasive development at the intersection of statistics and computer science. While it can benefit many data-related applications, the technical nature of the research literature and the corresponding algorithms slows down its adoption. Scikit-learn is an open-source software project that aims at making machine learning accessible to all, whether it be in academia or in industry. It benefits from the general-purpose Python language, which is both broadly adopted in the scientific world, and supported by a thriving ecosystem of contributors. Here we give a quick introduction to scikit-learn as well as to machine-learning basics.
223 citations
Cited by
More filters
13 Aug 2016
TL;DR: XGBoost as discussed by the authors proposes a sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning to achieve state-of-the-art results on many machine learning challenges.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.
10,428 citations
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.
10,141 citations
13 Aug 2016
TL;DR: In this article, the authors propose LIME, a method to explain models by presenting representative individual predictions and their explanations in a non-redundant way, framing the task as a submodular optimization problem.
Abstract: Despite widespread adoption, machine learning models remain mostly black boxes. Understanding the reasons behind predictions is, however, quite important in assessing trust, which is fundamental if one plans to take action based on a prediction, or when choosing whether to deploy a new model. Such understanding also provides insights into the model, which can be used to transform an untrustworthy model or prediction into a trustworthy one. In this work, we propose LIME, a novel explanation technique that explains the predictions of any classifier in an interpretable and faithful manner, by learning an interpretable model locally varound the prediction. We also propose a method to explain models by presenting representative individual predictions and their explanations in a non-redundant way, framing the task as a submodular optimization problem. We demonstrate the flexibility of these methods by explaining different models for text (e.g. random forests) and image classification (e.g. neural networks). We show the utility of explanations via novel experiments, both simulated and with human subjects, on various scenarios that require trust: deciding if one should trust a prediction, choosing between models, improving an untrustworthy classifier, and identifying why a classifier should not be trusted.
6,284 citations
University of Jyväskylä1, California Polytechnic State University2, University of California, Los Angeles3, Los Alamos National Laboratory4, National Research University – Higher School of Economics5, University of California, Berkeley6, University of Birmingham7, Australian Nuclear Science and Technology Organisation8, University of Washington9, University of Massachusetts Amherst10, University of West Bohemia11, University of Texas at Austin12, Brigham Young University13, Universidade Federal de Minas Gerais14, Google15
TL;DR: SciPy as discussed by the authors is an open-source scientific computing library for the Python programming language, which has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year.
Abstract: SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments.
6,244 citations
Posted Content•
TL;DR: GraphSAGE is presented, a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data and outperforms strong baselines on three inductive node-classification benchmarks.
Abstract: Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a variety of prediction tasks, from content recommendation to identifying protein functions. However, most existing approaches require that all nodes in the graph are present during training of the embeddings; these previous approaches are inherently transductive and do not naturally generalize to unseen nodes. Here we present GraphSAGE, a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data. Instead of training individual embeddings for each node, we learn a function that generates embeddings by sampling and aggregating features from a node's local neighborhood. Our algorithm outperforms strong baselines on three inductive node-classification benchmarks: we classify the category of unseen nodes in evolving information graphs based on citation and Reddit post data, and we show that our algorithm generalizes to completely unseen graphs using a multi-graph dataset of protein-protein interactions.
4,132 citations