scispace - formally typeset
Search or ask a question
Author

Olivier Pottiez

Bio: Olivier Pottiez is an academic researcher from Centro de Investigaciones en Optica. The author has contributed to research in topics: Fiber laser & Laser. The author has an hindex of 22, co-authored 220 publications receiving 1847 citations. Previous affiliations of Olivier Pottiez include Faculté polytechnique de Mons & National Institute of Astrophysics, Optics and Electronics.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a passively mode-locked figure-eight fiber laser scheme was proposed to generate noiselike optical pulses, or subns wave packets with a fine inner structure of subps pulses presenting random amplitudes and durations.
Abstract: We propose and study experimentally and numerically a passively mode-locked figure-eight fiber laser scheme generating noiselike optical pulses, or subns wave packets with a fine inner structure of subps pulses presenting random amplitudes and durations. The particular design of the nonlinear optical loop mirror (NOLM) used in this laser, relying on nonlinear polarization rotation, allows adjusting the switching power through input polarization control. Experimental results show stable pulsed operation over a limited range of the NOLM input polarization angle. Interestingly, the spectral and temporal characteristics of these pulses are observed to be widely variable over that range. In particular, the spectral width varies from 16 to 52 nm and this spectral variation is associated with an inverse evolution in the durations of the bunch and of the inner ultrashort pulses. Simulation results are in good agreement with the experiment. They confirm the strong dependence of the pulse properties on the value of the NOLM switching power, although NOLM switching is not alone responsible for the appearance of the noiselike pulsing mode.

85 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate theoretically the operation of a power-symmetric nonlinear optical loop mirror (NOLM) scheme, which relies on nonlinear polarisation rotation.

72 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental study of broadband spectrum generation in a piece of standard fiber using as the pump a train of noise-like pulses, or sub-nanosecond packets of sub-ps pulses with randomly varying amplitudes.
Abstract: We report the experimental study of broadband spectrum generation in a piece of standard fiber (SMF-28) using as the pump a train of noise-like pulses, or sub-nanosecond packets of sub-ps pulses with randomly varying amplitudes. The pulses are generated by an erbium-doped figure-eight fiber laser, and present a wide (∼50 nm) optical spectrum, which represents a significant advantage to seed the generation of new frequencies. Another advantage of the pulses is their relatively large energy, as they are made up of a large number of ultrashort pulses. After amplification with an Erbium Doped Fiber Amplifier (EDFA), the pulses were injected in a 0.75 km length of SMF-28 fiber. We obtained experimentally at the end of the fiber an output signal spectrum extending from 1530 nm to at least 1750 nm (the upper limit of the spectrum analyzer) for pump pulses with an average power of 20.4 mW, corresponding to a few kilowatts peak power. The spectral broadening is due to Raman self-frequency shift (SFS). It is noteworthy that the spectrum of the newly created frequencies was extremely uniform over the range of measurement. Considering that the Raman shift is directly related to the pump pulse duration, spectral flatness is a direct consequence of the random distribution of amplitudes and durations of the pulses in the packet. Finally, the results show the capabilities of noise-like pulses from a fiber laser for applications in supercontinuum generation based on nonlinear phenomena such as Raman SFS.

66 citations

Journal ArticleDOI
TL;DR: A 215-m-long figure-of-eight fiber laser including a double-clad erbium-ytterbium fiber and a nonlinear optical loop mirror based on nonlinear polarization evolution is studied, showing enhanced performances related to the absence of a polarizer in the present setup.
Abstract: In this work, we study a 215-m-long figure-of-eight fiber laser including a double-clad erbium-ytterbium fiber and a nonlinear optical loop mirror based on nonlinear polarization evolution. For proper adjustments, self-starting passive mode-locking is obtained. Measurements show that the mode-locked pulses actually are noise-like pulses, by analyzing the autocorrelation, scope traces and the very broad and flat spectrum extending over a record bandwidth of more than 200 nm, beyond the 1750 nm upper wavelength limit of the optical spectrum analyzer. Noise-like pulsing was observed for moderate and high pump power preserving the same behavior, reaching pulse energies as high as 300 nJ, with pulse durations of a few tens of ns and a coherence length in the order of 1 ps. Stable fundamental mode locking as well as harmonic mode locking up to the 6th order were observed. The bandwidth was further extended to more than 450 nm when a 100-m piece of highly nonlinear fiber was inserted at the laser output. The enhanced performances obtained compared to other similar schemes could be related to the absence of a polarizer in the present setup, so that the state of polarization along the cavity is no longer restricted.

56 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that by use of a novel waveguide geometry the field can be confined in a 50-nm-wide low-index region with a normalized intensity of 20 microm(-2), approximately 20 times higher than what can be achieved in SiO2 with conventional rectangular waveguides.
Abstract: We present a novel waveguide geometry for enhancing and confining light in a nanometer-wide low-index material. Light enhancement and confinement is caused by large discontinuity of the electric field at highindex-contrast interfaces. We show that by use of such a structure the field can be confined in a 50-nm-wide low-index region with a normalized intensity of 20 mm 22 . This intensity is approximately 20 times higher than what can be achieved in SiO2 with conventional rectangular waveguides. © 2004 Optical Society of America OCIS codes: 030.4070, 130.0130, 130.2790, 230.7370, 230.7380, 230.7390, 230.7400. Recent results in integrated optics have shown the ability to guide, bend, split, and f ilter light on chips by use of optical devices based on high-index-contrast waveguides. 1–5 In all these devices the guiding mechanism is based on total internal ref lection (TIR) in a highindex material (core) surrounded by a low-indexmaterial (cladding); the TIR mechanism can strongly confine light in the high-index material. In recent years a number of structures have been proposed to guide or enhance light in low-index materials, 6–1 1 relying on external ref lections provided by interference effects. Unlike TIR, the external ref lection cannot be perfectly unity; therefore the modes in these structures are inherently leaky modes. In addition, since interference is involved, these structures are strongly wavelength dependent. Here we show that the optical field can be enhanced and conf ined in the low-index material even when light is guided by TIR. For a high-index-contrast interface, Maxwell’s equations state that, to satisfy the continuity of the normal component of electric f lux density D, the corresponding electric field (E-field) must undergo a large discontinuity with much higher amplitude in the low-index side. We show that this discontinuity can be used to strongly enhance and confine light in a nanometer-wide region of low-index material. The proposed structure presents an eigenmode, and it is compatible with highly integrated photonics technology. The principle of operation of the novel structure can be illustrated by analysis of the slab-based structure shown in Fig. 1(a), where a low-index slot is embedded between two high-index slabs (shaded regions). The novel structure is hereafter referred to as a slot waveguide. The slot waveguide eigenmode can be seen as being formed by the interaction between the fundamental eigenmodes of the individual slab waveguides. Rigorously, the analytical solution for the transverse E-field profile Ex of the fundamental TM eigenmode of the slab-based slot waveguide is

1,716 citations

Journal ArticleDOI
TL;DR: A novel silicon waveguide structure for guiding and confining light in nanometer-wide low-refractive-index material is experimentally demonstrated and it is shown that the structure can be implemented in highly integrated photonics.
Abstract: We experimentally demonstrate a novel silicon waveguide structure for guiding and confining light in nanometer-wide low-refractive-index material. The optical field in the low-index material is enhanced because of the discontinuity of the electric field at high-index-contrast interfaces. We measure a 30% reduction of the effective index of light propagating in the novel structure due to the presence of the nanometer-wide low-index region, evidencing the guiding and confinement of light in the low-index material. We fabricate ring resonators based on the structure and show that the structure can be implemented in highly integrated photonics.

678 citations

01 Jan 2001
TL;DR: The development of new highly nonlinear fibers, referred to as microstructured fibers, holey fibers and photonic crystal fibers, is the next generation technology for all-optical signal processing and biomedical applications as mentioned in this paper.
Abstract: * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The book presents sound coverage of the fundamentals of lightwave technology, along with material on pulse compression techniques and rare-earth-doped fiber amplifiers and lasers. The extensively revised chapters include information on fiber-optic communication systems and the ultrafast signal processing techniques that make use of nonlinear phenomena in optical fibers.New material focuses on the applications of highly nonlinear fibers in areas ranging from wavelength laser tuning and nonlinear spectroscopy to biomedical imaging and frequency metrology. Technologies such as quantum cryptography, quantum computing, and quantum communications are also covered in a new chapter.This book will be an ideal reference for: RD scientists involved with research on fiber amplifiers and lasers; graduate students and researchers working in the fields of optical communications and quantum information. * The only book on how to develop nonlinear fiber optic applications* Two new chapters on the latest developments; Highly Nonlinear Fibers and Quantum Applications* Coverage of biomedical applications

595 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the recent results on upconversion spectroscopy obtained in our group is presented, where it is demonstrated that as much as 50% of the NIR excitation photons contribute to the up-conversion emission.

587 citations

Journal ArticleDOI
TL;DR: Numerical simulations of the onset phase of continuous wave supercontinuum generation from modulation instability show that the structure of the field as it develops can be interpreted in terms of the properties of Akhmediev Breathers.
Abstract: Numerical simulations of the onset phase of continuous wave supercontinuum generation from modulation instability show that the structure of the field as it develops can be interpreted in terms of the properties of Akhmediev Breathers. Numerical and analytical results are compared with experimental measurements of spectral broadening in photonic crystal fiber using nanosecond pulses.

422 citations