scispace - formally typeset
Search or ask a question
Author

Olivier S. Barnouin

Other affiliations: Johns Hopkins University
Bio: Olivier S. Barnouin is an academic researcher from Johns Hopkins University Applied Physics Laboratory. The author has contributed to research in topics: Asteroid & Impact crater. The author has an hindex of 40, co-authored 211 publications receiving 5364 citations. Previous affiliations of Olivier S. Barnouin include Johns Hopkins University.


Papers
More filters
Journal ArticleDOI
TL;DR: The OSIRIS-REx spacecraft departed for near-Earth asteroid (101955) Bennu via an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu as discussed by the authors.
Abstract: In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

440 citations

Journal ArticleDOI
S. A. Stern1, Fran Bagenal2, Kimberly Ennico3, G. R. Gladstone1  +147 moreInstitutions (26)
16 Oct 2015-Science
TL;DR: The New Horizons encounter revealed that Pluto displays a surprisingly wide variety of geological landforms, including those resulting from glaciological and surface-atmosphere interactions as well as impact, tectonic, possible cryovolcanic, and mass-wasting processes.
Abstract: The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected.

411 citations

Journal ArticleDOI
Sei-ichiro Watanabe1, Sei-ichiro Watanabe2, Masatoshi Hirabayashi3, Naru Hirata4, Na. Hirata5, Rina Noguchi2, Yuri Shimaki2, H. Ikeda, Eri Tatsumi6, Makoto Yoshikawa2, Makoto Yoshikawa7, Shota Kikuchi2, Hikaru Yabuta8, Tomoki Nakamura9, Shogo Tachibana6, Shogo Tachibana2, Yoshiaki Ishihara2, Tomokatsu Morota1, Kohei Kitazato4, Naoya Sakatani2, Koji Matsumoto7, Koji Wada10, Hiroki Senshu10, C. Honda4, Tatsuhiro Michikami11, Hiroshi Takeuchi7, Hiroshi Takeuchi2, Toru Kouyama12, R. Honda13, Shingo Kameda14, Tetsuharu Fuse15, Hideaki Miyamoto6, Goro Komatsu10, S. Sugita6, Tatsuaki Okada6, Tatsuaki Okada2, Noriyuki Namiki7, Masahiko Arakawa5, Masateru Ishiguro16, Masanao Abe7, Masanao Abe2, Robert Gaskell17, Eric Palmer17, Olivier S. Barnouin18, Patrick Michel19, A. S. French20, Jay W. McMahon20, Daniel J. Scheeres20, Paul A. Abell, Yukio Yamamoto7, Yukio Yamamoto2, Satoshi Tanaka2, Satoshi Tanaka7, Kei Shirai2, Moe Matsuoka2, Manabu Yamada10, Y. Yokota2, Y. Yokota13, H. Suzuki21, Kosuke Yoshioka6, Yuichiro Cho6, Naoki Nishikawa5, T. Sugiyama4, Hideaki Kikuchi6, Ryodo Hemmi6, Tomohiro Yamaguchi2, Naoko Ogawa2, Go Ono, Yuya Mimasu2, Kent Yoshikawa, T. Takahashi2, Yuto Takei2, Atsushi Fujii2, Chikako Hirose, Takahiro Iwata2, Takahiro Iwata7, Masahiro Hayakawa2, Satoshi Hosoda2, Osamu Mori2, Hirotaka Sawada2, Takanobu Shimada2, Stefania Soldini2, Hajime Yano7, Hajime Yano2, Ryudo Tsukizaki2, M. Ozaki2, M. Ozaki7, Yuichi Iijima2, K. Ogawa5, Masaki Fujimoto2, T. M. Ho22, Aurelie Moussi23, Ralf Jaumann, J. P. Bibring, Christian Krause, Fuyuto Terui2, Takanao Saiki2, Satoru Nakazawa2, Yoshiyuki Tsuda7, Yoshiyuki Tsuda2 
19 Mar 2019-Science
TL;DR: The Hayabusa2 spacecraft measured the mass, size, shape, density, and spin rate of asteroid Ryugu, showing that it is a porous rubble pile, and observations of Ryugu's shape, mass, and geomorphology suggest that Ryugu was reshaped by centrifugally induced deformation during a period of rapid rotation.
Abstract: The Hayabusa2 spacecraft arrived at the near-Earth carbonaceous asteroid 162173 Ryugu in 2018. We present Hayabusa2 observations of Ryugu’s shape, mass, and geomorphology. Ryugu has an oblate “spinning top” shape, with a prominent circular equatorial ridge. Its bulk density, 1.19 ± 0.02 grams per cubic centimeter, indicates a high-porosity (>50%) interior. Large surface boulders suggest a rubble-pile structure. Surface slope analysis shows Ryugu’s shape may have been produced from having once spun at twice the current rate. Coupled with the observed global material homogeneity, this suggests that Ryugu was reshaped by centrifugally induced deformation during a period of rapid rotation. From these remote-sensing investigations, we identified a suitable sample collection site on the equatorial ridge.

402 citations

Journal ArticleDOI
TL;DR: LOLA's initial global data sets as well as the first high-resolution digital elevation models (DEMs) of polar topography are described in this article, where LOLA has also provided the highest resolution global maps yet produced of slopes, roughness and the 1064-nm reflectance of the lunar surface.
Abstract: As of June 19, 2010, the Lunar Orbiter Laser Altimeter, an instrument on the Lunar Reconnaissance Orbiter, has collected over 2.0 × 10^9 measurements of elevation that collectively represent the highest resolution global model of lunar topography yet produced. These altimetric observations have been used to improve the lunar geodetic grid to ~10 m radial and ~100 m spatial accuracy with respect to the Moon's center of mass. LOLA has also provided the highest resolution global maps yet produced of slopes, roughness and the 1064-nm reflectance of the lunar surface. Regional topography of the lunar polar regions allows precise characterization of present and past illumination conditions. LOLA's initial global data sets as well as the first high-resolution digital elevation models (DEMs) of polar topography are described herein.

394 citations

Journal ArticleDOI
Seiji Sugita1, Seiji Sugita2, Rie Honda3, Tomokatsu Morota4, Shingo Kameda5, Hirotaka Sawada6, Eri Tatsumi1, Manabu Yamada2, C. Honda7, Yasuhiro Yokota3, Yasuhiro Yokota6, Toru Kouyama8, Naoya Sakatani6, K. Ogawa9, H. Suzuki10, Tatsuaki Okada6, Tatsuaki Okada1, Noriyuki Namiki11, Satoshi Tanaka11, Satoshi Tanaka6, Yuichi Iijima6, Kosuke Yoshioka1, Masahiro Hayakawa6, Yuichiro Cho1, Moe Matsuoka6, Naru Hirata7, Hideaki Miyamoto1, Deborah L. Domingue12, Masatoshi Hirabayashi13, Tomoki Nakamura14, Takahiro Hiroi15, Tatsuhiro Michikami16, Patrick Michel17, Ronald-Louis Ballouz6, Ronald-Louis Ballouz18, Olivier S. Barnouin19, Carolyn M. Ernst19, Stefan Schröder20, Hideaki Kikuchi1, Ryodo Hemmi1, Goro Komatsu12, Goro Komatsu2, T. Fukuhara5, Makoto Taguchi5, Takehiko Arai, Hiroki Senshu2, Hirohide Demura7, Yoshiko Ogawa7, Yuri Shimaki6, Tomohiko Sekiguchi21, T. G. Müller22, Axel Hagermann23, Takahide Mizuno6, Hirotomo Noda, Koji Matsumoto11, R. Yamada7, Yoshiaki Ishihara6, H. Ikeda, Hiroshi Araki, K. Yamamoto, Shinsuke Abe24, Fumi Yoshida2, A. Higuchi, Sho Sasaki25, S. Oshigami, Seiitsu Tsuruta, Kazuyoshi Asari, Seiichi Tazawa, M. Shizugami, J. Kimura25, Toshimichi Otsubo26, Hikaru Yabuta27, Sunao Hasegawa6, Masateru Ishiguro28, Shogo Tachibana1, Eric Palmer12, Robert Gaskell12, L. Le Corre12, Ralf Jaumann20, Katharina A. Otto20, Nicole Schmitz20, Paul A. Abell, M. A. Barucci29, Michael E. Zolensky, Faith Vilas12, Florian Thuillet17, C. Sugimoto1, N. Takaki1, Yutaka Suzuki1, Hiroaki Kamiyoshihara1, Masato Okada1, Kenji Nagata8, Masaki Fujimoto6, Makoto Yoshikawa6, Makoto Yoshikawa11, Yukio Yamamoto11, Yukio Yamamoto6, Kei Shirai6, Rina Noguchi6, Naoko Ogawa6, Fuyuto Terui6, Shota Kikuchi6, Tomohiro Yamaguchi6, Yusuke Oki1, Yuki Takao1, Hiroshi Takeuchi6, Go Ono, Yuya Mimasu6, Kent Yoshikawa, T. Takahashi6, Yuto Takei6, Atsushi Fujii6, Chikako Hirose, Satoru Nakazawa6, Satoshi Hosoda6, Osamu Mori6, Takanobu Shimada6, Stefania Soldini6, Takahiro Iwata11, Takahiro Iwata6, Masanao Abe11, Masanao Abe6, Hajime Yano6, Hajime Yano11, Ryudo Tsukizaki6, M. Ozaki6, M. Ozaki11, Kazutaka Nishiyama6, Takanao Saiki6, Sei-ichiro Watanabe6, Sei-ichiro Watanabe4, Yoshiyuki Tsuda6, Yoshiyuki Tsuda11 
19 Apr 2019-Science
TL;DR: Spectral observations and a principal components analysis suggest that Ryugu originates from the Eulalia or Polana asteroid family in the inner main belt, possibly via more than one generation of parent bodies.
Abstract: Additional co-authors: N Namiki, S Tanaka, Y Iijima, K Yoshioka, M Hayakawa, Y Cho, M Matsuoka, N Hirata, N Hirata, H Miyamoto, D Domingue, M Hirabayashi, T Nakamura, T Hiroi, T Michikami, P Michel, R-L Ballouz, O S Barnouin, C M Ernst, S E Schroder, H Kikuchi, R Hemmi, G Komatsu, T Fukuhara, M Taguchi, T Arai, H Senshu, H Demura, Y Ogawa, Y Shimaki, T Sekiguchi, T G Muller, T Mizuno, H Noda, K Matsumoto, R Yamada, Y Ishihara, H Ikeda, H Araki, K Yamamoto, S Abe, F Yoshida, A Higuchi, S Sasaki, S Oshigami, S Tsuruta, K Asari, S Tazawa, M Shizugami, J Kimura, T Otsubo, H Yabuta, S Hasegawa, M Ishiguro, S Tachibana, E Palmer, R Gaskell, L Le Corre, R Jaumann, K Otto, N Schmitz, P A Abell, M A Barucci, M E Zolensky, F Vilas, F Thuillet, C Sugimoto, N Takaki, Y Suzuki, H Kamiyoshihara, M Okada, K Nagata, M Fujimoto, M Yoshikawa, Y Yamamoto, K Shirai, R Noguchi, N Ogawa, F Terui, S Kikuchi, T Yamaguchi, Y Oki, Y Takao, H Takeuchi, G Ono, Y Mimasu, K Yoshikawa, T Takahashi, Y Takei, A Fujii, C Hirose, S Nakazawa, S Hosoda, O Mori, T Shimada, S Soldini, T Iwata, M Abe, H Yano, R Tsukizaki, M Ozaki, K Nishiyama, T Saiki, S Watanabe, Y Tsuda

325 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1996
TL;DR: Exploring and identifying structure is even more important for multivariate data than univariate data, given the difficulties in graphically presenting multivariateData and the comparative lack of parametric models to represent it.
Abstract: Exploring and identifying structure is even more important for multivariate data than univariate data, given the difficulties in graphically presenting multivariate data and the comparative lack of parametric models to represent it. Unfortunately, such exploration is also inherently more difficult.

920 citations

Journal ArticleDOI
TL;DR: The authors show the operational environment of asteroid Bennu, validate its photometric phase function and demonstrate the accelerating rotational rate due to YORP effect using the data acquired during the approach phase of OSIRIS-REx mission.
Abstract: During its approach to asteroid (101955) Bennu, NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft surveyed Bennu’s immediate environment, photometric properties, and rotation state. Discovery of a dusty environment, a natural satellite, or unexpected asteroid characteristics would have had consequences for the mission’s safety and observation strategy. Here we show that spacecraft observations during this period were highly sensitive to satellites (sub-meter scale) but reveal none, although later navigational images indicate that further investigation is needed. We constrain average dust production in September 2018 from Bennu’s surface to an upper limit of 150 g s–1 averaged over 34 min. Bennu’s disk-integrated photometric phase function validates measurements from the pre-encounter astronomical campaign. We demonstrate that Bennu’s rotation rate is accelerating continuously at 3.63 ± 0.52 × 10–6 degrees day–2, likely due to the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, with evolutionary implications.

905 citations

Journal ArticleDOI
08 Feb 2013-Science
TL;DR: In this article, high-resolution gravity data obtained from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft show that the bulk density of the Moon's highlands crust is 2550 kilograms per cubic meter, substantially lower than generally assumed.
Abstract: High-resolution gravity data obtained from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft show that the bulk density of the Moon's highlands crust is 2550 kilograms per cubic meter, substantially lower than generally assumed. When combined with remote sensing and sample data, this density implies an average crustal porosity of 12% to depths of at least a few kilometers. Lateral variations in crustal porosity correlate with the largest impact basins, whereas lateral variations in crustal density correlate with crustal composition. The low-bulk crustal density allows construction of a global crustal thickness model that satisfies the Apollo seismic constraints, and with an average crustal thickness between 34 and 43 kilometers, the bulk refractory element composition of the Moon is not required to be enriched with respect to that of Earth.

675 citations

Journal ArticleDOI

674 citations