scispace - formally typeset
Search or ask a question
Author

Olivier Stasse

Bio: Olivier Stasse is an academic researcher from University of Toulouse. The author has contributed to research in topics: Humanoid robot & Robot. The author has an hindex of 28, co-authored 128 publications receiving 5943 citations. Previous affiliations of Olivier Stasse include Hoffmann-La Roche & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: The first successful application of the SLAM methodology from mobile robotics to the "pure vision" domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible to structure from motion approaches is presented.
Abstract: We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from mobile robotics to the "pure vision" domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible to structure from motion approaches. The core of the approach is the online creation of a sparse but persistent map of natural landmarks within a probabilistic framework. Our key novel contributions include an active approach to mapping and measurement, the use of a general motion model for smooth camera movement, and solutions for monocular feature initialization and feature orientation estimation. Together, these add up to an extremely efficient and robust algorithm which runs at 30 Hz with standard PC and camera hardware. This work extends the range of robotic systems in which SLAM can be usefully applied, but also opens up new areas. We present applications of MonoSLAM to real-time 3D localization and mapping for a high-performance full-size humanoid robot and live augmented reality with a hand-held camera

3,772 citations

Proceedings ArticleDOI
17 Dec 2015
TL;DR: This paper implemented a complete model-predictive controller and applied it in real-time on the physical HRP-2 robot, the first time that such a whole-body model predictive controller is applied in real time on a complex dynamic robot.
Abstract: Controlling the robot with a permanently-updated optimal trajectory, also known as model predictive control, is the Holy Grail of whole-body motion generation. Before obtaining it, several challenges should be faced: computation cost, non-linear local minima, algorithm stability, etc. In this paper, we address the problem of applying the updated optimal control in real-time on the physical robot. In particular, we focus on the problems raised by the delays due to computation and by the differences between the real robot and the simulated model. Based on the optimal-control solver MuJoCo, we implemented a complete model-predictive controller and we applied it in real-time on the physical HRP-2 robot. It is the first time that such a whole-body model predictive controller is applied in real-time on a complex dynamic robot. Aside from the technical contributions cited above, the main contribution of this paper is to report the experimental results of this premiere implementation.

239 citations

Proceedings ArticleDOI
14 Jan 2019
TL;DR: This paper introduces Pinocchio, an open-source software framework that implements rigid body dynamics algorithms and their analytical derivatives and evaluates the performances against RBDL, another framework with broad dissemination inside the robotics community.
Abstract: We introduce Pinocchio, an open-source software framework that implements rigid body dynamics algorithms and their analytical derivatives. Pinocchio does not only include standard algorithms employed in robotics (e.g., forward and inverse dynamics) but provides additional features essential for the control, the planning and the simulation of robots. In this paper, we describe these features and detail the programming patterns and design which make Pinocchio efficient. We evaluate the performances against RBDL, another framework with broad dissemination inside the robotics community. We also demonstrate how the source code generation embedded in Pinocchio outperforms other approaches of state of the art.

200 citations

Proceedings Article
22 Jun 2009
TL;DR: This paper presents a framework called the Stack Of Tasks (SoT) implementing a Generalized Inverted Kinematics, which provides a run-time graph of computational nodes and shows through a case study that this framework allows an efficient integration in nowadays middleware such as CORBA.
Abstract: This paper present a framework called the Stack Of Tasks (SoT) implementing a Generalized Inverted Kinematics. This particular implementation provides a run-time graph of computational nodes. It can be modified through a specifically targeted scripting language. It allows hybrid control scheme necessary for complex robot applications such as a HRP-2 humanoid robot in a collaborative working environment. We also show through a case study that this framework allows an efficient integration in nowadays middleware such as CORBA.

157 citations

Proceedings ArticleDOI
16 May 2016
TL;DR: A generic and efficient approach to generate dynamically consistent motions for under-actuated systems like humanoid or quadruped robots, able to compute a stable trajectory of the center of mass of the robot along with the angular momentum, for any given configuration of contacts.
Abstract: This paper presents a generic and efficient approach to generate dynamically consistent motions for under-actuated systems like humanoid or quadruped robots. The main contribution is a walking pattern generator, able to compute a stable trajectory of the center of mass of the robot along with the angular momentum, for any given configuration of contacts (e.g. on uneven, sloppy or slippery terrain, or with closed-gripper). Unlike existing methods, our solver is fast enough to be applied as a model-predictive controller. We then integrate this pattern generator in a complete framework: an acyclic contact planner is first used to automatically compute the contact sequence from a 3D model of the environment and a desired final posture; a stable walking pattern is then computed by the proposed solver; a dynamically-stable whole-body trajectory is finally obtained using a second-order hierarchical inverse kinematics. The implementation of the whole pipeline is fast enough to plan a step while the previous one is executed. The interest of the method is demonstrated by real experiments on the HRP-2 robot, by performing long-step walking and climbing a staircase with handrail support.

141 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: ORB-SLAM as discussed by the authors is a feature-based monocular SLAM system that operates in real time, in small and large indoor and outdoor environments, with a survival of the fittest strategy that selects the points and keyframes of the reconstruction.
Abstract: This paper presents ORB-SLAM, a feature-based monocular simultaneous localization and mapping (SLAM) system that operates in real time, in small and large indoor and outdoor environments. The system is robust to severe motion clutter, allows wide baseline loop closing and relocalization, and includes full automatic initialization. Building on excellent algorithms of recent years, we designed from scratch a novel system that uses the same features for all SLAM tasks: tracking, mapping, relocalization, and loop closing. A survival of the fittest strategy that selects the points and keyframes of the reconstruction leads to excellent robustness and generates a compact and trackable map that only grows if the scene content changes, allowing lifelong operation. We present an exhaustive evaluation in 27 sequences from the most popular datasets. ORB-SLAM achieves unprecedented performance with respect to other state-of-the-art monocular SLAM approaches. For the benefit of the community, we make the source code public.

4,522 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Proceedings ArticleDOI
13 Nov 2007
TL;DR: A system specifically designed to track a hand-held camera in a small AR workspace, processed in parallel threads on a dual-core computer, that produces detailed maps with thousands of landmarks which can be tracked at frame-rate with accuracy and robustness rivalling that of state-of-the-art model-based systems.
Abstract: This paper presents a method of estimating camera pose in an unknown scene. While this has previously been attempted by adapting SLAM algorithms developed for robotic exploration, we propose a system specifically designed to track a hand-held camera in a small AR workspace. We propose to split tracking and mapping into two separate tasks, processed in parallel threads on a dual-core computer: one thread deals with the task of robustly tracking erratic hand-held motion, while the other produces a 3D map of point features from previously observed video frames. This allows the use of computationally expensive batch optimisation techniques not usually associated with real-time operation: The result is a system that produces detailed maps with thousands of landmarks which can be tracked at frame-rate, with an accuracy and robustness rivalling that of state-of-the-art model-based systems.

4,091 citations

Journal ArticleDOI
TL;DR: A survival of the fittest strategy that selects the points and keyframes of the reconstruction leads to excellent robustness and generates a compact and trackable map that only grows if the scene content changes, allowing lifelong operation.
Abstract: This paper presents ORB-SLAM, a feature-based monocular SLAM system that operates in real time, in small and large, indoor and outdoor environments. The system is robust to severe motion clutter, allows wide baseline loop closing and relocalization, and includes full automatic initialization. Building on excellent algorithms of recent years, we designed from scratch a novel system that uses the same features for all SLAM tasks: tracking, mapping, relocalization, and loop closing. A survival of the fittest strategy that selects the points and keyframes of the reconstruction leads to excellent robustness and generates a compact and trackable map that only grows if the scene content changes, allowing lifelong operation. We present an exhaustive evaluation in 27 sequences from the most popular datasets. ORB-SLAM achieves unprecedented performance with respect to other state-of-the-art monocular SLAM approaches. For the benefit of the community, we make the source code public.

3,807 citations