scispace - formally typeset
Search or ask a question
Author

Oliviero Carugo

Bio: Oliviero Carugo is an academic researcher from University of Pavia. The author has contributed to research in topics: Protein structure & Protein crystallization. The author has an hindex of 37, co-authored 177 publications receiving 4587 citations. Previous affiliations of Oliviero Carugo include Max F. Perutz Laboratories & International Centre for Genetic Engineering and Biotechnology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, structural parameters of free and coordinated sulfoxides are comprehensively reviewed and average values derived, and principal component analyses have been performed in order to evidence the deformation pathways of sulfoxide upon coordination.

297 citations

Journal ArticleDOI
TL;DR: A simple procedure is presented to make the root‐mean‐square distances between pairs of three‐dimensional structures independent of their dimensions, which may be useful in evolutionary and fold classification studies as well as in simple comparisons between different structural models.
Abstract: The degree of similarity of two protein three-dimensional structures is usually measured with the root-mean-square distance between equivalent atom pairs. Such a similarity measure depends on the dimension of the proteins, that is, on the number of equivalent atom pairs. The present communication presents a simple procedure to make the root-mean-square distances between pairs of three-dimensional structures independent of their dimensions. This normalization may be useful in evolutionary and fold classification studies as well as in simple comparisons between different structural models.

288 citations

Journal ArticleDOI
01 May 1997-Proteins
TL;DR: A systematic analysis of several crystal structures of NAD(P)‐protein complexes show that the NADP coenzymes are more flexible in conformation than those of NAD; although the protein‐cofactor interactions are largely conserved in the NAD complexes, they are quite variable in those of NadP; and in both cases the pocket around the nicotinamide moiety is substrate dependent.
Abstract: The ubiquitous redox cofactors nicotinamide adenine dinucleotides [NAD and NADP] are very similar molecules, despite their participation in substantially different biochemical processes. NADP differs from NAD in only the presence of an additional phosphate group esterified to the 2'-hydroxyl group of the ribose at the adenine end and yet NADP is confined with few exceptions to the reactions of reductive biosynthesis, whereas NAD is used almost exclusively in oxidative degradations. The discrimination between NAD and NADP is therefore an impressive example of the power of molecular recognition by proteins. The many known tertiary structures of NADP complexes affords the possibility for an analysis of their discrimination. A systematic analysis of several crystal structures of NAD(P)-protein complexes show that: 1) the NADP coenzymes are more flexible in conformation than those of NAD; 2) although the protein-cofactor interactions are largely conserved in the NAD complexes, they are quite variable in those of NADP; and 3) in both cases the pocket around the nicotinamide moiety is substrate dependent. The conserved and variable interactions between protein and cofactors in the respective binding pockets are reported in detail. Discrimination between NAD and NADP is essentially a consequence of the overall pocket and not of a few residues. A clear fingerprint in NAD complexes is a carboxylate side chain that chelates the diol group at the ribose near the adenine, whereas in NADP complexes an arginine side chain faces the adenine plane and interacts with the phosphomonoester. The latter type of interaction might be a general feature of recognition of nucleotides by proteins. Other features such as strand-like hydrogen bonding between the NADP diphosphate moieties and the protein are also significant. The NADP binding pocket properties should prove useful in protein engineering and design.

210 citations

Journal ArticleDOI
TL;DR: The results suggest that protein crystallization depends on random protein‐ protein interactions, which have little in common with physiological protein‐protein recognition processes, and that the possibility of engineering macromolecular crystallization to improve crystal quality could be widened.
Abstract: Protein-protein contacts in monomeric protein crystal structures have been analyzed and compared to the physiological protein-protein contacts in oligomerization. A number of features differentiate the crystal-packing contacts from the natural contacts occurring in multimeric proteins. The area of the protein surface patches involved in packing contacts is generally smaller and its amino acid composition is indistinguishable from that of the protein surface accessible to the solvent. The fraction of protein surface in crystal contacts is very variable and independent of the number of packing contacts. The thermal motion at the crystal packing interface and that of the protein core, even for large packing interfaces, though the tendency is to be closer to that of the core. These results suggest that protein crystallization depends on random protein-protein interactions, which have little in common with physiological protein-protein recognition processes, and that the possibility of engineering macromolecular crystallization to improve crystal quality could be widened.

191 citations

Journal ArticleDOI
TL;DR: The role of Mek1 and Mek2 in growth factor–induced Erk phosphorylation is not interchangeable, and Mek1 is established as the crucial modulator of Mek and Erk signaling.
Abstract: Mek1 and Mek2 (also known as Map2k1 and Map2k2, respectively) are evolutionarily conserved, dual-specificity kinases that mediate Erk1 and Erk2 activation during adhesion and growth factor signaling. Here we describe a previously uncharacterized, unexpected role of Mek1 in downregulating Mek2-dependent Erk signaling. Mek1 mediates the regulation of Mek2 in the context of a previously undiscovered Mek1-Mek2 complex. The Mek heterodimer is negatively regulated by Erk-mediated phosphorylation of Mek1 on Thr292, a residue missing in Mek2. Disabling this Erk-proximal negative-feedback step stabilizes the phosphorylation of both Mek2 and Erk in cultured cells and in vivo in Mek1 knockout embryos and mice. Thus, in disagreement with the current perception of the pathway, the role of Mek1 and Mek2 in growth factor-induced Erk phosphorylation is not interchangeable. Our data establish Mek1 as the crucial modulator of Mek and Erk signaling and have potential implications for the role of Mek1 and Mek2 in tumorigenesis.

162 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: This “manifesto” is to introduce a large audience to the broad research horizons offered by the concept of synthetic foldamers and suggests a collective, emerging realization that control over oligomer and polymer folding could lead to new types of molecules with useful properties.
Abstract: Nature relies on large molecules to carry out sophisticated chemical operations, such as catalysis, tight and specific binding, directed flow of electrons, or controlled crystallization of inorganic phases. The polymers entrusted with these crucial tasks, mostly proteins but sometimes RNA, are unique relative to other biological and synthetic polymers in that they adopt specific compact conformations that are thermodynamically and kinetically stable. These folding patterns generate “active sites” via precise three-dimensional arrangement of functional groups. In terms of covalent connectivity, the groups that comprise the active site are often widely spaced along the polymer backbone. The remarkable range of chemical capabilities that evolution has elicited from proteins suggests that it might be possible to design analogous capabilities into unnatural polymers that fold into compact and specific conformations. Since biological evolution has operated under many constraints, the functional properties of proteins and RNA should be viewed as merely exemplifying the potential of compactly folded polymers. The chemist’s domain includes all possible combinations of the elements, and the biological realm, vast and complex though it may be, is only a small part of that domain. Therefore, realization of the potential of folding polymers may be limited more by the human imagination than by physical barriers. I use the term “foldamer” to describe any polymer with a strong tendency to adopt a specific compact conformation. Among proteins, the term “compact” is associated with tertiary structure, and there is as yet no synthetic polymer that displays a specific tertiary structure. Protein tertiary structure arises from the assembly of elements of regular secondary structure (helices, sheets, and turns). The first step in foldamer design must therefore be to identify new backbones with well-defined secondary structural preferences. “Well-defined” in this case means that the conformational preference should be displayed in solution by oligomers of modest length, and I will designate as a foldamer any oligomer that meets this criterion. Within the past decade, a handful of research groups have described unnatural oligomers with interesting conformational propensities. The motivations behind such efforts are varied, but these studies suggest a collective, emerging realization that control over oligomer and polymer folding could lead to new types of molecules with useful properties. The purpose of this “manifesto” is to introduce a large audience to the broad research horizons offered by the concept of synthetic foldamers. The path to creating useful foldamers involves several daunting steps. (i) One must identify new polymeric backbones with suitable folding propensities. This goal includes developing a predictively useful understanding of the relationship between the repetitive features of monomer structure and conformational properties at the polymer level. (ii) One must endow the resulting foldamers with interesting chemical functions, by design, by randomization and screening (“evolution”), or by some combination of these two approaches. (iii) For technological utility, one must be able to produce a foldamer efficiently, which will generally include preparation of the constituent monomers in stereochemically pure form and optimization of heteropolymer synthesis. Each of these steps involves fascinating chemical challenges; the first step is the focus of this Account.

2,137 citations