scispace - formally typeset
Search or ask a question
Author

Olli Saksela

Other affiliations: University of Helsinki
Bio: Olli Saksela is an academic researcher from Helsinki University Central Hospital. The author has contributed to research in topics: Plasminogen activator & Melanoma. The author has an hindex of 34, co-authored 74 publications receiving 9441 citations. Previous affiliations of Olli Saksela include University of Helsinki.


Papers
More filters
Journal ArticleDOI
TL;DR: VEGF‐C is a novel regulator of endothelia, and its effects may extend beyond the lymphatic system, where Flt4 is expressed.
Abstract: Angiogenesis, the sprouting of new blood vessels from pre-existing ones, and the permeability of blood vessels are regulated by vascular endothelial growth factor (VEGF) via its two known receptors Flt1 (VEGFR-1) and KDR/Flk-1 (VEGFR-2) The Flt4 receptor tyrosine kinase is related to the VEGF receptors, but does not bind VEGF and its expression becomes restricted mainly to lymphatic endothelia during development In this study, we have purified the Flt4 ligand, VEGF-C, and cloned its cDNA from human prostatic carcinoma cells While VEGF-C is homologous to other members of the VEGF/platelet derived growth factor (PDGF) family, its C-terminal half contains extra cysteine-rich motifs characteristic of a protein component of silk produced by the larval salivary glands of the midge, Chironomus tentans VEGF-C is proteolytically processed, binds Flt4, which we rename as VEGFR-3 and induces tyrosine autophosphorylation of VEGFR-3 and VEGFR-2 In addition, VEGF-C stimulated the migration of bovine capillary endothelial cells in collagen gel VEGF-C is thus a novel regulator of endothelia, and its effects may extend beyond the lymphatic system, where Flt4 is expressed

1,734 citations

Journal ArticleDOI
TL;DR: The results suggest that VEGF-B has a role in angiogenesis and endothelial cell growth, particularly in muscle.
Abstract: We have isolated and characterized a novel growth factor for endothelial cells, vascular endothelial growth factor B (VEGF-B), with structural similarities to vascular endothelial growth factor (VEGF) and placenta growth factor. VEGF-B was particularly abundant in heart and skeletal muscle and was coexpressed with VEGF in these and other tissues. VEGF-B formed cell-surface-associated disulfide-linked homodimers and heterodimerized with VEGF when coexpressed. Conditioned medium from transfected 293EBNA cells expressing VEGF-B stimulated DNA synthesis in endothelial cells. Our results suggest that VEGF-B has a role in angiogenesis and endothelial cell growth, particularly in muscle.

838 citations

Journal ArticleDOI
TL;DR: The role of post‐translational processing in VEGF‐C secretion and function is analysed, and novel structure–function relationships in the PDGF/VEGF family are revealed.
Abstract: The recently identified vascular endothelial growth factor C (VEGF-C) belongs to the platelet-derived growth factor (PDGF)/VEGF family of growth factors and is a ligand for the endothelial-specific receptor tyrosine kinases VEGFR-3 and VEGFR-2. The VEGF homology domain spans only about one-third of the cysteine-rich VEGF-C precursor. Here we have analysed the role of post-translational processing in VEGF-C secretion and function, as well as the structure of the mature VEGF-C. The stepwise proteolytic processing of VEGF-C generated several VEGF-C forms with increased activity towards VEGFR-3, but only the fully processed VEGF-C could activate VEGFR-2. Recombinant 'mature' VEGF-C made in yeast bound VEGFR-3 (K[D] = 135 pM) and VEGFR-2 (K[D] = 410 pM) and activated these receptors. Like VEGF, mature VEGF-C increased vascular permeability, as well as the migration and proliferation of endothelial cells. Unlike other members of the PDGF/VEGF family, mature VEGF-C formed mostly non-covalent homodimers. These data implicate proteolytic processing as a regulator of VEGF-C activity, and reveal novel structure-function relationships in the PDGF/VEGF family.

825 citations

Journal ArticleDOI
TL;DR: The results suggest that the angiogenic effect of TGF-beta on endothelial cells in blood vessels may be mediated at least partly by a paracrine induction of VEGF in other surrounding cell types.

725 citations


Cited by
More filters
Journal ArticleDOI
09 Aug 1996-Cell
TL;DR: The work from the authors' laboratories reviewed herein was supported by grants from the National Cancer Institute.

6,895 citations

Journal ArticleDOI
TL;DR: A novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour is presented, which recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.
Abstract: A large body of literature is available on wound healing in humans. Nonetheless, a standardized ex vivo wound model without disruption of the dermal compartment has not been put forward with compelling justification. Here, we present a novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour. Importantly, the basement membrane remained intact after blister roof removal and keratinocytes were absent in the wounded area. Upon six days of culture, the wound was covered with one to three-cell thick K14+Ki67+ keratinocyte layers, indicating that proliferation and migration were involved in wound closure. After eight to twelve days, a multi-layered epidermis was formed expressing epidermal differentiation markers (K10, filaggrin, DSG-1, CDSN). Investigations about immune cell-specific manners revealed more T cells in the blister roof epidermis compared to normal epidermis. We identified several cell populations in blister roof epidermis and suction blister fluid that are absent in normal epidermis which correlated with their decrease in the dermis, indicating a dermal efflux upon negative pressure. Together, our model recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.

6,378 citations

Journal ArticleDOI
TL;DR: The establishment of a vascular supply is required for organ development and differentiation as well as for tissue repair and reproductive functions in the adult.
Abstract: The establishment of a vascular supply is required for organ development and differentiation as well as for tissue repair and reproductive functions in the adult1 Neovascularization (angiogenesis) is also implicated in the pathogenesis of a number of disorders These include: proliferative retinopathies, age-related macular degeneration, tumors, rheumatoid arthritis, and psoriasis1,2 A strong correlation has been noted between density of microvessels in primary breast cancers and their nodal metastases and patient survival3 Similarly, a correlation has been reported between vascularity and invasive behavior in several other tumors4–6

4,603 citations

Journal ArticleDOI
TL;DR: Recent developments that have widened considerably the understanding of the mechanisms that control V EGF production and VEGF signal transduction are focused on and recent studies that have shed light on the mechanisms by which VEGf regulates angiogenesis are reviewed.
Abstract: Vascular endothelial growth factor (VEGF) is a highly specific mitogen for vascular endothelial cells. Five VEGF isoforms are generated as a result of alternative splicing from a single VEGF gene. These isoforms differ in their molecular mass and in biological properties such as their ability to bind to cell-surface heparan-sulfate proteoglycans. The expression of VEGF is potentiated in response to hypoxia, by activated oncogenes, and by a variety of cytokines. VEGF induces endothelial cell proliferation, promotes cell migration, and inhibits apoptosis. In vivo VEGF induces angiogenesis as well as permeabilization of blood vessels, and plays a central role in the regulation of vasculogenesis. Deregulated VEGF expression contributes to the development of solid tumors by promoting tumor angiogenesis and to the etiology of several additional diseases that are characterized by abnormal angiogenesis. Consequently, inhibition of VEGF signaling abrogates the development of a wide variety of tumors. The various VEGF forms bind to two tyrosine-kinase receptors, VEGFR-1 (flt-1) and VEGFR-2 (KDR/flk-1), which are expressed almost exclusively in endothelial cells. Endothelial cells express in addition the neuropilin-1 and neuropilin-2 coreceptors, which bind selectively to the 165 amino acid form of VEGF (VEGF165). This review focuses on recent developments that have widened considerably our understanding of the mechanisms that control VEGF production and VEGF signal transduction and on recent studies that have shed light on the mechanisms by which VEGF regulates angiogenesis.

3,569 citations

Journal ArticleDOI
Napoleone Ferrara1
TL;DR: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in a variety of in vivo models and is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.
Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in a variety of in vivo models. Hypoxia has been shown to be a major inducer of VEGF gene transcription. The tyrosine kinases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are high-affinity VEGF receptors. The role of VEGF in developmental angiogenesis is emphasized by the finding that loss of a single VEGF allele results in defective vascularization and early embryonic lethality. VEGF is critical also for reproductive and bone angiogenesis. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. In situ hybridization studies demonstrate expression of VEGF mRNA in the majority of human tumors. Anti-VEGF monoclonal antibodies and other VEGF inhibitors block the growth of several tumor cell lines in nude mice. Clinical trials with various VEGF inhibitors in a variety of malignancies are ongoing. Very recently, an anti-VEGF monoclonal antibody (bevacizumab; Avastin) has been approved by the Food and Drug Administration as a first-line treatment for metastatic colorectal cancer in combination with chemotherapy. Furthermore, VEGF is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.

3,414 citations