scispace - formally typeset
Search or ask a question
Author

Om P. Gandhi

Bio: Om P. Gandhi is an academic researcher from University of Utah. The author has contributed to research in topics: Finite-difference time-domain method & Magnetic field. The author has an hindex of 49, co-authored 243 publications receiving 7619 citations. Previous affiliations of Om P. Gandhi include Central Electronics Engineering Research Institute & North Carolina State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used the finite-difference time-domain method and a new millimeter-resolution anatomically based model of the human to study electromagnetic energy coupled to the head due to mobile telephones at 835 and 1900 MHz.
Abstract: The authors have used the finite-difference time-domain method and a new millimeter-resolution anatomically based model of the human to study electromagnetic energy coupled to the head due to mobile telephones at 835 and 1900 MHz. Assuming reduced dimensions characteristic of today's mobile telephones, the authors have obtained SAR distributions for two different lengths of monopole antennas of lengths /spl lambda//4 and 3/spl lambda//8 for a model of the adult male and reduced-scale models of 10- and 5-year-old children and find that peak one-voxel and 1-g SARs are larger for the smaller models of children, particularly at 835 MHz. Also, a larger in-depth penetration of absorbed energy for these smaller models is obtained. The authors have also studied the effect of using the widely disparate tissue properties reported in the literature and of using homogeneous instead of the anatomically realistic heterogeneous models on the SAR distributions. Homogeneous models are shown to grossly overestimate both the peak 1-voxel and 1-g SARs. Last, the authors show that it is possible to use truncated one-half or one-third models of the human head with negligible errors in the calculated SAR distributions. This simplification will allow considerable savings in computer memory and computation times.

529 citations

Journal ArticleDOI
TL;DR: In this article, a new differential equation approach is proposed for general dispersive media for which the complex permittivity in *( omega ) may be described by a single-order Debye relaxation equation or a modified version thereof.
Abstract: A weakness of the finite-difference-time-domain (FDTD) method is that dispersion of the dielectric properties of the scattering/absorbing body is often ignored and frequency-independent properties are generally taken. While this is not a disadvantage for CW or narrowband irradiation, the results thus obtained may be highly erroneous for short pulses where ultrawide bandwidths are involved. In some recent publications, procedures based on a convolution integral describing D(t) in terms of E(t) are given for media for which the complex permittivity in *( omega ) may be described by a single-order Debye relaxation equation or a modified version thereof. Procedures are, however, needed for general dispersive media for which in *( omega ) and mu *( omega ) may be expressible in terms of rational functions, or for human tissues for which multiterm Debye relaxation equations must generally be used. The authors describe a new differential equation approach, which can be used for general dispersive media. In this method D(t) in terms of E(t) by means of a differential equation involving E, and their time derivatives. The method is illustrated for several examples. >

249 citations

Journal ArticleDOI
TL;DR: The finite-difference time-domain method is used to calculate induced current densities for the anatomically based model of the human body for the various orientations of the time-varying magnetic fields, namely from side to side, front to back, or from top to bottom of the model, respectively.
Abstract: We have used the finite-difference time-domain (FDTD) method to calculate induced current densities in a 1.31-cm (nominal 1/2 in) resolution anatomically based model of the human body for exposure to purely electric, purely magnetic, and combined electric and magnetic fields at 60 Hz. This model based on anatomic sectional diagrams consists of 45,024 cubic cells of dimension 1.31 cm for which the volume-averaged tissue properties are prescribed. It is recognized that the conductivities of several tissues (skeletal muscle, bone, etc.) are highly anisotropic for power-line frequencies. This has, however, been neglected in the first instance and will be included in future calculations. Because of the quasi-static nature of coupling at the power-line frequencies, a higher quasi-static frequency f' may be used for irradiation of the model, and the internal fields E' thus calculated can be scaled back to the frequency of interest, e.g., 60 Hz. Since in the FDTD method one needs to calculate in the time domain until convergence is obtained (typically 3-4 time periods), this frequency scaling to 5-10 MHz for f' reduces the needed number of iterations by over 5 orders of magnitude. The data calculated for the induced current and its variation as a function ofmore » height are in excellent agreement with the data published in the literature. The average current densities calculated for the various sections of the body for the magnetic field component (H) are considerably smaller (by a factor of 20-50) than those due to the vertically polarized electric field component when the ratio E/H is 377 ohms. We have also used the previously described impedance method to calculate the induced current densities for the anatomically based model of the human body for the various orientations of the time-varying magnetic fields, namely from side to side, front to back, or from top to bottom of the model, respectively. 34 refs.« less

204 citations

Journal ArticleDOI
TL;DR: In this article, the millimeter-wave absorption efficiency for the human body with and without clothing was analyzed and it was shown that up to 95% of the incident energy may be absorbed in the skin with dry clothing, with or without an intervening air gap, acting as an impedance transformer.
Abstract: With recent advances in millimeter-wave technology, including the availability of high-power sources in this band, it has become necessary to understand the biological implications of this energy for human beings. This paper gives the millimeter-wave absorption efficiency for the human body with and without clothing. Ninety to ninety-five percent of the incident energy may be absorbed in the skin with dry clothing, with or without an intervening air gap, acting as an impedance transformer. On account of the submillimeter depths of penetration in the skin, superficial SAR'S as high as 65-357 W/Kg have been calculated for power density of incident radiation corresponding to the ANSI guideline of 5 mW/cm/sup 2/. Because most of the millimeter-wave absorption is in the region of the cutaneous thermal receptors (0.1 - 1.0 mm), the sensations of absorbed energy are likely to be similar to those of IR. For the latter, threshold of heat perception is near 0.67 mW/cm/sup 2/, with power densities on the order of 8.7 mW/cm/sup 2/ likely to cause sensations of "very warm to hot" with a latency of 1.0+-0.6s. Calculations are made for thresholds of hearing of pulsed millimeter waves. Pulsed energy densities of 143-579 µJ/cm/sup 2/ are obtained for the frequency band 30-300 GHz. These are 8-28 times larger than the threshold for microwaves below 3 GHz. The paper also points to the need for evaluation of ocular effects of millimeter-wave irradiation because of high SAR's in the cornea.

201 citations

Journal ArticleDOI
TL;DR: The results obtained demonstrate that the FDTD method is capable of calculating internal SAR distribution with acceptable accuracy and is evaluated by comparing its results to analytic solutions in two and three dimensions.
Abstract: Although there are acceptable methods for calculating whole body electromagnetic absorption, no completely acceptable method for calculating the local specific absorption rate (SAR) at points within the body has been developed. Frequency domain methods, such as the method of moments (MoM) have achieved some success; however, MoM requires computer storage on the order of (3N) 2 and computation time on the order of (3N) 3 where N is the number of cells. The finite-difference time-domain (FDTD) method has been employed extensively in calculating the scattering of metallic objects, and recently is seeing some use in calculating the interaction of EM fields with complex, lossy dielectric bodies. Since the FDTD method has storage and time requirements proportional to N, it presents an attractive alternative to calculating SAR distribution in large bodies. This paper describes the FDTD method and evaluates it by comparing its results to analytic solutions in two and three dimensions. The utility of the FDTD method is demonstrated by a 3D scan of the human torso. The results obtained demonstrate that the FDTD method is capable of calculating internal SAR distribution with acceptable accuracy. With the availability of supercomputers, such as the CRAY II, the calculation of SAR distribution in a man model of 50 000 cells (1.27 cm per cell) appears to be feasible.

183 citations


Cited by
More filters
Journal Article
TL;DR: The International Commission on Non-Ionizing Radiation Protection (ICNIRP)—was established as a successor to the IRPA/INIRC, which developed a number of health criteria documents on NIR as part of WHO’s Environmental Health Criteria Programme, sponsored by the United Nations Environment Programme (UNEP).
Abstract: IN 1974, the International Radiation Protection Association (IRPA) formed a working group on non-ionizing radiation (NIR), which examined the problems arising in the field of protection against the various types of NIR. At the IRPA Congress in Paris in 1977, this working group became the International Non-Ionizing Radiation Committee (INIRC). In cooperation with the Environmental Health Division of the World Health Organization (WHO), the IRPA/INIRC developed a number of health criteria documents on NIR as part of WHO’s Environmental Health Criteria Programme, sponsored by the United Nations Environment Programme (UNEP). Each document includes an overview of the physical characteristics, measurement and instrumentation, sources, and applications of NIR, a thorough review of the literature on biological effects, and an evaluation of the health risks of exposure to NIR. These health criteria have provided the scientific database for the subsequent development of exposure limits and codes of practice relating to NIR. At the Eighth International Congress of the IRPA (Montreal, 18–22 May 1992), a new, independent scientific organization—the International Commission on Non-Ionizing Radiation Protection (ICNIRP)—was established as a successor to the IRPA/INIRC. The functions of the Commission are to investigate the hazards that may be associated with the different forms of NIR, develop international guidelines on NIR exposure limits, and deal with all aspects of NIR protection. Biological effects reported as resulting from exposure to static and extremely-low-frequency (ELF) electric and magnetic fields have been reviewed by UNEP/ WHO/IRPA (1984, 1987). Those publications and a number of others, including UNEP/WHO/IRPA (1993) and Allen et al. (1991), provided the scientific rationale for these guidelines. A glossary of terms appears in the Appendix.

4,549 citations

Journal ArticleDOI
TL;DR: The present updated guidelines review issues of risk and safety of conventional TMS protocols, address the undesired effects and risks of emerging TMS interventions, the applications of TMS in patients with implanted electrodes in the central nervous system, and safety aspects of T MS in neuroimaging environments.

4,447 citations

Journal Article
TL;DR: This publication replaces the low-frequency part of the 1998 guidelines and some guidance in this document is extended to 10 MHz to cover the nervous system effects in this frequency range.
Abstract: IN THIS document, guidelines are established for the protection of humans exposed to electric and magnetic fields in the low-frequency range of the electromagnetic spectrum. The general principles for the development of ICNIRP guidelines are published elsewhere (ICNIRP 2002). For the purpose of this document, the low-frequency range extends from 1 Hz to 100 kHz. Above 100 kHz, effects such as heating need to be considered, which are covered by other ICNIRP guidelines. However, in the frequency range from 100 kHz up to approximately 10 MHz protection from both, low frequency effects on the nervous system as well as high frequency effects need to be considered depending on exposure conditions. Therefore, some guidance in this document is extended to 10 MHz to cover the nervous system effects in this frequency range. Guidelines for static magnetic fields have been issued in a separate document (ICNIRP 2009). Guidelines applicable to movement-induced electric fields or time-varying magnetic fields up to 1 Hz will be published separately. This publication replaces the low-frequency part of the 1998 guidelines (ICNIRP 1998). ICNIRP is currently revising the guidelines for the high-frequency portion of the spectrum (above 100 kHz).

1,620 citations

Journal ArticleDOI
TL;DR: All tissues and organs were reconstructed as three-dimensional unstructured triangulated surface objects, yielding high precision images of individual features of the body, which greatly enhances the meshing flexibility and the accuracy in comparison with the traditional voxel-based representation of anatomical models.
Abstract: The objective of this study was to develop anatomically correct whole body human models of an adult male (34 years old), an adult female (26 years old) and two children (an 11-year-old girl and a six-year-old boy) for the optimized evaluation of electromagnetic exposure. These four models are referred to as the Virtual Family. They are based on high resolution magnetic resonance (MR) images of healthy volunteers. More than 80 different tissue types were distinguished during the segmentation. To improve the accuracy and the effectiveness of the segmentation, a novel semi-automated tool was used to analyze and segment the data. All tissues and organs were reconstructed as three-dimensional (3D) unstructured triangulated surface objects, yielding high precision images of individual features of the body. This greatly enhances the meshing flexibility and the accuracy with respect to thin tissue layers and small organs in comparison with the traditional voxel-based representation of anatomical models. Conformal computational techniques were also applied. The techniques and tools developed in this study can be used to more effectively develop future models and further improve the accuracy of the models for various applications. For research purposes, the four models are provided for free to the scientific community.

1,347 citations

Journal ArticleDOI
TL;DR: It is shown that electric fields may be clustered at distinct gyri/sulci sites because of details in tissue architecture/conductivity, notably cerebrospinal fluid (CSF).

1,071 citations