Author
Omid Mehrjooee
Bio: Omid Mehrjooee is an academic researcher from Iran University of Science and Technology. The author has an hindex of 1, co-authored 1 publications receiving 17 citations.
Papers
More filters
TL;DR: The outcomes indicate that when there is no offset, the decrease in damping results in chaotic generalized modal coordinates, and as the excitation frequency decreases, a limiting amplitude is created at 0.35 before which the behavior of generalized rigid and modal coordinate is different, while this behavior has more similarity after this point.
Abstract: In this article, the nonlinear dynamic analysis of a flexible-link manipulator is presented. Especially, the possibility of chaos occurrence in the system dynamic model is investigated. Upon the oc...
21 citations
Cited by
More filters
TL;DR: This paper presents a new approach to the advanced dynamics of mechanical systems, following the differential principle in generalized form (a generalization of the Lagrange–D’Alembert principle), and establishing the equations of the dynamics of fast-moving systems include the acceleration energies of higher-order.
Abstract: This paper presents a new approach to the advanced dynamics of mechanical systems. It is known that in the movements corresponding to some mechanical systems (e.g., robots), accelerations of higher order are developed. Higher-order accelerations are an integral part of higher-order acceleration energies. Unlike other research papers devoted to these advanced notions, the main purpose of the paper is to present, in a matrix form, the defining expressions for the acceleration energies of a higher order. Following the differential principle in generalized form (a generalization of the Lagrange–D’Alembert principle), the equations of the dynamics of fast-moving systems include, instead of kinetic energies, the acceleration energies of higher-order. To establish the equations which characterize both the energies of accelerations and the advanced dynamics, the following input parameters are considered: matrix exponentials and higher-order differential matrices. An application of a 5 d.o.f robot structure is presented in the final part of the paper. This is used to illustrate the validity of the presented mathematical formulations.
20 citations
TL;DR: The paper presents an alternative method of calculation theses using the Gibbs–Appell (GA) formulation, which requires a smaller number of calculations and, as a result, is easier to apply in practice.
Abstract: When analyzing the dynamic behavior of multi-body elastic systems, a commonly used method is the finite element method conjunctively with Lagrange’s equations. The central problem when approaching such a system is determining the equations of motion for a single finite element. The paper presents an alternative method of calculation theses using the Gibbs–Appell (GA) formulation, which requires a smaller number of calculations and, as a result, is easier to apply in practice. For this purpose, the energy of the accelerations for one single finite element is calculated, which will be used then in the GA equations. This method can have advantages in applying to the study of multi-body systems with elastic elements and in the case of robots and manipulators that have in their composition some elastic elements. The number of differentiation required when using the Gibbs–Appell method is smaller than if the Lagrange method is used which leads to a smaller number of operations to obtain the equations of motion.
18 citations
TL;DR: This critical review is advantageous and indispensable for researchers who are interested in the area to gain fruitful knowledge on the mathematical modelling methods and guides researchers to select the suitable method for modelling.
Abstract: Mathematical modelling plays an important role for robotic manipulators in order to design their particular controllers. Also, it is hard challenge to obtain an accurate mathematical model or obtain a suitable modelling method in such vast field. Thus, this critical review is advantageous and indispensable for researchers who are interested in the area to gain fruitful knowledge on the mathematical modelling methods. This paper is classified based on the type of robotic manipulators such as flexible link manipulators (FLMs), rigid link manipulators (RLMs) and hybrid manipulators which involves rigid links and flexible links. The used modelling methods for FLMs are the assumed mode method, the finite element method, and the lumped parameter method as approximation techniques which are well explained and reviewed. The Lagrangian method has inclusive explanation and review which is widely participated for obtaining the dynamic equations of FLMs, and it is appropriate and commonly employed for modelling RLMs. The Newtonian method, the forward kinematic, and the inverse kinematic are also well discussed and reviewed which are suitable and commonly employed for modelling RLMs. The critical discussion of 170 articles reported in this paper guides researchers to select the suitable method for modelling. This paper reviews the published articles in the period of 2010–2020 except for few older articles for the need of providing essential theoretical knowledge. The advantages and disadvantages of each method are well summarized at the end of the paper. The intelligent identification methods are briefly discussed due to the lack of publications especially on the period of 2010–2020.
16 citations
15 May 2020
TL;DR: In this article, the Lagrange's equation is used to determine the finite element motion equations in the case of elasto-dynamic analysis of a multibody system (MBS).
Abstract: The Lagrange’s equation remains the most used method by researchers to determine the finite element motion equations in the case of elasto-dynamic analysis of a multibody system (MBS). However, applying this method requires the calculation of the kinetic energy of an element and then a series of differentiations that involve a great computational effort. The last decade has shown an increased interest of researchers in the study of multibody systems (MBS) using alternative analytical methods, aiming to simplify the description of the model and the solution of the systems of obtained equations. The method of Kane’s equations is one possibility to do this and, in the paper, we applied this method in the study of a MBS applying finite element analysis (FEA). The number of operations involved is lower than in the case of Lagrange’s equations and Kane’s equations are little used previously in conjunction with the finite element method (FEM). Results are obtained regardless of the type of finite element used. The shape functions will determine the final form of the matrix coefficients in the equations. The results are applied in the case of a planar mechanism with two degrees of freedom.
14 citations
TL;DR: A technical design of a universal versatile robotic manipulator for handling with automotive products is presented and it is recommended an appropriate material for the manufacture of the device to reach its optimal accuracy of positioning of handled objects during a long-term operation.
Abstract: Automation is a process of handling and transport of products, which allows replacing man’s control by operation of manipulators and robots. It represents a highly complex process, which includes s...
13 citations