scispace - formally typeset
Search or ask a question
Author

Omri Wolf

Bio: Omri Wolf is an academic researcher from Sandia National Laboratories. The author has contributed to research in topics: Metamaterial & Second-harmonic generation. The author has an hindex of 10, co-authored 26 publications receiving 445 citations. Previous affiliations of Omri Wolf include The Racah Institute of Physics & Hebrew University of Jerusalem.

Papers
More filters
Journal ArticleDOI
TL;DR: A new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure is proposed, which will enable such phased arrays to span most of the infrared spectrum.
Abstract: Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.

126 citations

Journal ArticleDOI
TL;DR: The tunneling spectra measured on NCs functionalized with NH4Br or allylamine show band-edge shifts toward higher energies, akin to p-type doping, which is consistent with the blueshift revealed by photoluminescence from dodecene functionalized Si-NCs.
Abstract: We have applied scanning tunneling spectroscopy in studies of the electronic level structure of surface-functionalized colloidal Si nanocrystals (Si-NCs) as a function of their size for various capping ligands. The energy gaps extracted from the tunneling spectra increase with decreasing NC size, manifesting the effect of quantum confinement. This is consistent with the blueshift revealed by photoluminescence (PL) from dodecene functionalized Si-NCs. The tunneling spectra measured on NCs functionalized with NH4Br or allylamine show band-edge shifts toward higher energies, akin to p-type doping. This behavior can be accounted for by the combined contributions of the ligands’ dipole moments and charge transfer between a Si-NC and its surface groups. Concomitantly, size-independent PL spectra, which cannot be associated with NC band gap variations, were observed for the latter Si-NCs.

97 citations

Journal ArticleDOI
TL;DR: It is shown that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source and achieves the first Kerker condition.
Abstract: Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. In this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrally overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.

76 citations

Journal ArticleDOI
TL;DR: In this article, the authors used planar metamaterial resonators to enhance the near infrared second harmonic generation obtained from intersubband transitions in III-Nitride heterostructures.
Abstract: We use planar metamaterial resonators to enhance by more than two orders of magnitude the near infrared second harmonic generation obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators' cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a different class of sources for quantum photonics related phenomena.

31 citations

Journal ArticleDOI
TL;DR: W wiring of individual colloidal nanorods (NRs), 30-60 nm long by 3.5-5 nm diameter, is reported, which exhibit an anomalous exponential temperature dependence of the form I approximately exp(T/T(0).
Abstract: We report wiring of individual colloidal nanorods (NRs), 30−60 nm long by 3.5−5 nm diameter. Strong electrical coupling is achieved by electron beam induced deposition (EBID) of metallic lines targeting NR tips with nanometric precision. At T = 4 K many devices exhibit smooth I(V) curves with no sharp onset features, which remarkably fit a Fowler−Nordheim tunneling model. All devices exhibit an anomalous exponential temperature dependence of the form I ∼ exp(T/T0). This irregular behavior cannot be explained by any hopping or activation model and is interpreted by accounting for the lowering of the NR conduction band due to lattice dilation and phonon coupling.

28 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible is reviewed, with opinions of opportunities and challenges in this rapidly developing research field.
Abstract: Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature. This class of micro- and nano-structured artificial media have attracted great interest during the past 15 years and yielded ground-breaking electromagnetic and photonic phenomena. However, the high losses and strong dispersion associated with the resonant responses and the use of metallic structures, as well as the difficulty in fabricating the micro- and nanoscale 3D structures, have hindered practical applications of metamaterials. Planar metamaterials with subwavelength thickness, or metasurfaces, consisting of single-layer or few-layer stacks of planar structures, can be readily fabricated using lithography and nanoprinting methods, and the ultrathin thickness in the wave propagation direction can greatly suppress the undesirable losses. Metasurfaces enable a spatially varying optical response (e.g. scattering amplitude, phase, and polarization), mold optical wavefronts into shapes that can be designed at will, and facilitate the integration of functional materials to accomplish active control and greatly enhanced nonlinear response. This paper reviews recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible. We provide an overview of key metasurface concepts such as anomalous reflection and refraction, and introduce metasurfaces based on the Pancharatnam-Berry phase and Huygens' metasurfaces, as well as their use in wavefront shaping and beam forming applications, followed by a discussion of polarization conversion in few-layer metasurfaces and their related properties. An overview of dielectric metasurfaces reveals their ability to realize unique functionalities coupled with Mie resonances and their low ohmic losses. We also describe metasurfaces for wave guidance and radiation control, as well as active and nonlinear metasurfaces. Finally, we conclude by providing our opinions of opportunities and challenges in this rapidly developing research field.

1,528 citations

Journal ArticleDOI
TL;DR: Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature as discussed by the authors.
Abstract: Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature. Planar metamaterials with subwavelength thickness, or metasurfaces, consisting of single-layer or few-layer stacks of planar structures, can be readily fabricated using lithography and nanoprinting methods, and the ultrathin thickness in the wave propagation direction can greatly suppress the undesirable losses. Metasurfaces enable a spatially varying optical response, mold optical wavefronts into shapes that can be designed at will, and facilitate the integration of functional materials to accomplish active control and greatly enhanced nonlinear response. This paper reviews recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible. We provide an overview of key metasurface concepts such as anomalous reflection and refraction, and introduce metasurfaces based on the Pancharatnam-Berry phase and Huygens' metasurfaces, as well as their use in wavefront shaping and beam forming applications, followed by a discussion of polarization conversion in few-layer metasurfaces and their related properties. An overview of dielectric metasurfaces reveals their ability to realize unique functionalities coupled with Mie resonances and their low ohmic losses. We also describe metasurfaces for wave guidance and radiation control, as well as active and nonlinear metasurfaces. Finally, we conclude by providing our opinions of opportunities and challenges in this rapidly developing research field.

1,106 citations

Journal ArticleDOI
TL;DR: In this article, the design of nonlinear photonic metasurfaces is discussed, in particular the criteria for choosing the materials and symmetries of the meta-atoms.
Abstract: Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the ‘meta-atoms’), enable the manipulation of light–matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing. Photonic metasurfaces can be used to control the polarization, phase and amplitude of light. Nonlinear metasurfaces enable giant nonlinear optical chirality, realization of the geometric Berry phase, wavefront engineering, and optical switching and modulation, and hold potential for on-chip applications.

542 citations

Journal ArticleDOI
01 Mar 2014-Carbon
TL;DR: In this article, a review of recent reports on the preparation of S-doped carbons, with special emphasis on porous carbons with intrinsically doped sulfur, is presented.

502 citations

Journal ArticleDOI
01 Apr 2017
TL;DR: Metasurfaces have become a rapidly growing field of research in recent years due to their exceptional abilities in light manipulation and versatility in ultrathin optical applications and are promising for integration with on-chip nanophotonic devices owing to their planar profiles.
Abstract: Metasurfaces have become a rapidly growing field of research in recent years due to their exceptional abilities in light manipulation and versatility in ultrathin optical applications. They also significantly benefit from their simplified fabrication process compared to metamaterials and are promising for integration with on-chip nanophotonic devices owing to their planar profiles. The recent progress in metasurfaces is reviewed and they are classified into six categories according to their underlying physics for realizing full 2π phase manipulation. Starting from multi-resonance and gap-plasmon metasurfaces that rely on the geometric effect of plasmonic nanoantennas, Pancharatnam–Berry-phase metasurfaces, on the other hand, use identical nanoantennas with varying rotation angles. The recent development of Huygens' metasurfaces and all-dielectric metasurfaces especially benefit from highly efficient transmission applications. An overview of state-of-the-art fabrication technologies is introduced, ranging from the commonly used processes such as electron beam and focused-ion-beam lithography to some emerging techniques, such as self-assembly and nanoimprint lithography. A variety of functional materials incorporated to reconfigurable or tunable metasurfaces is also presented. Finally, a few of the current intriguing metasurface-based applications are discussed, and opinions on future prospects are provided.

496 citations