scispace - formally typeset
Search or ask a question
Author

Omur Ozel

Bio: Omur Ozel is an academic researcher from George Washington University. The author has contributed to research in topics: Communication channel & Energy harvesting. The author has an hindex of 28, co-authored 96 publications receiving 4821 citations. Previous affiliations of Omur Ozel include University of California, Berkeley & Carnegie Mellon University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors consider a point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel, and they consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session.
Abstract: Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of an adaptive directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use stochastic dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies under various different configurations.

1,130 citations

Posted Content
TL;DR: This paper considers optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel, and introduces a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions.
Abstract: Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of an adaptive directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use stochastic dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies under various different configurations.

950 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the transmission completion time minimization problem in an additive white Gaussian noise (AWGN) broadcast channel, where the transmitter is able to harvest energy from the nature, using a rechargeable battery.
Abstract: In this paper, we investigate the transmission completion time minimization problem in an additive white Gaussian noise (AWGN) broadcast channel, where the transmitter is able to harvest energy from the nature, using a rechargeable battery. The harvested energy is modeled to arrive at the transmitter during the course of transmissions. The transmitter has a fixed number of packets to be delivered to each receiver. The objective is to minimize the time by which all of the packets are delivered to their respective destinations. To this end, we optimize the transmit powers and transmission rates in a deterministic setting. We first analyze the structural properties of the optimal transmission policy in a two-user broadcast channel via the dual problem of maximizing the departure region by a fixed time T. We prove that the optimal total transmit power sequence has the same structure as the optimal single-user transmit power sequence in . In addition, the total power is split optimally based on a cut-off power level; if the total transmit power is lower than this cut-off level, all transmit power is allocated to the stronger user; otherwise, all transmit power above this level is allocated to the weaker user. We then extend our analysis to an M-user broadcast channel. We show that the optimal total power sequence has the same structure as the two-user case and optimally splitting the total power among M users involves M-1 cut-off power levels. Using this structure, we propose an algorithm that finds the globally optimal policy. Our algorithm is based on reducing the broadcast channel problem to a single-user problem as much as possible. Finally, we illustrate the optimal policy and compare its performance with several suboptimal policies under different settings.

346 citations

Journal ArticleDOI
TL;DR: A system in which the average recharge rate is time varying in a larger time scale is considered and the optimal offline power policy is derived that maximizes the average throughput, by using majorization theory.
Abstract: In energy harvesting communication systems, an exogenous recharge process supplies energy necessary for data transmission and the arriving energy can be buffered in a battery before consumption. We determine the information-theoretic capacity of the classical additive white Gaussian noise (AWGN) channel with an energy harvesting transmitter with an unlimited sized battery. As the energy arrives randomly and can be saved in the battery, codewords must obey cumulative stochastic energy constraints. We show that the capacity of the AWGN channel with such stochastic channel input constraints is equal to the capacity with an average power constraint equal to the average recharge rate. We provide two capacity achieving schemes: save-and-transmit and best-effort-transmit. In the save-and-transmit scheme, the transmitter collects energy in a saving phase of proper duration that guarantees that there will be no energy shortages during the transmission of code symbols. In the best-effort-transmit scheme, the transmission starts right away without an initial saving period, and the transmitter sends a code symbol if there is sufficient energy in the battery, and a zero symbol otherwise. Finally, we consider a system in which the average recharge rate is time varying in a larger time scale and derive the optimal offline power policy that maximizes the average throughput, by using majorization theory.

306 citations

Journal ArticleDOI
TL;DR: The concept of energy cooperation is introduced, where a user wirelessly transmits a portion of its energy to another energy harvesting user, which enables shaping and optimization of the energy arrivals at the energy-receiving node, and improves the overall system performance, despite the loss incurred in energy transfer.
Abstract: In energy harvesting communications, users transmit messages using energy harvested from nature during the course of communication. With an optimum transmit policy, the performance of the system depends only on the energy arrival profiles. In this paper, we introduce the concept of energy cooperation, where a user wirelessly transmits a portion of its energy to another energy harvesting user. This enables shaping and optimization of the energy arrivals at the energy-receiving node, and improves the overall system performance, despite the loss incurred in energy transfer. We consider several basic multi-user network structures with energy harvesting and wireless energy transfer capabilities: relay channel, two-way channel and multiple access channel. We determine energy management policies that maximize the system throughput within a given duration using a Lagrangian formulation and the resulting KKT optimality conditions. We develop a two-dimensional directional water-filling algorithm which optimally controls the flow of harvested energy in two dimensions: in time (from past to future) and among users (from energy-transferring to energy-receiving) and show that a generalized version of this algorithm achieves the boundary of the capacity region of the two-way channel.

288 citations


Cited by
More filters
Journal ArticleDOI

2,415 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications, and explores various key design issues according to the network types, i.e., single-hop networks, multiantenna networks, relay networks, and cognitive radio networks.
Abstract: Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next-generation wireless networks As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service requirements In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, which is referred to as RF energy harvesting networks (RF-EHNs) First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations and review the communication protocols specially designed for RF-EHNs We also explore various key design issues in the development of RF-EHNs according to the network types, ie, single-hop networks, multiantenna networks, relay networks, and cognitive radio networks Finally, we envision some open research directions

2,352 citations

Journal ArticleDOI
TL;DR: In this paper, a low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computing offloading.
Abstract: Mobile-edge computing (MEC) is an emerging paradigm to meet the ever-increasing computation demands from mobile applications. By offloading the computationally intensive workloads to the MEC server, the quality of computation experience, e.g., the execution latency, could be greatly improved. Nevertheless, as the on-device battery capacities are limited, computation would be interrupted when the battery energy runs out. To provide satisfactory computation performance as well as achieving green computing, it is of significant importance to seek renewable energy sources to power mobile devices via energy harvesting (EH) technologies. In this paper, we will investigate a green MEC system with EH devices and develop an effective computation offloading strategy. The execution cost , which addresses both the execution latency and task failure, is adopted as the performance metric. A low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computation offloading. A unique advantage of this algorithm is that the decisions depend only on the current system state without requiring distribution information of the computation task request, wireless channel, and EH processes. The implementation of the algorithm only requires to solve a deterministic problem in each time slot, for which the optimal solution can be obtained either in closed form or by bisection search. Moreover, the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Sample simulation results shall be presented to corroborate the theoretical analysis as well as validate the effectiveness of the proposed algorithm.

1,385 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the domain of physical layer security in multiuser wireless networks, with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security and observations on potential research directions in this area.
Abstract: This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers, without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical layer message authentication is also briefly introduced. The survey concludes with observations on potential research directions in this area.

1,294 citations