scispace - formally typeset
Search or ask a question
Author

Onur Mudanyali

Other affiliations: University of California
Bio: Onur Mudanyali is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Microscopy & Microscope. The author has an hindex of 21, co-authored 40 publications receiving 3444 citations. Previous affiliations of Onur Mudanyali include University of California.

Papers
More filters
Journal ArticleDOI
TL;DR: Unique features of lens-free computational imaging tools are discussed and some of their emerging results for wide-field on-chip microscopy, such as the achievement of a numerical aperture of ∼0.8–0.9 across a field of view (FOV) of more than 20 mm2, which corresponds to an image with more than 1.5 gigapixels.
Abstract: In this perspective, the authors present the basic features of lens-free computational imaging tools and report performance comparisons with conventional microscopy methods. They also discuss the challenges that these computational on-chip microscopes face for their wide-scale biomedical application.

486 citations

Journal ArticleDOI
TL;DR: This compact and light-weight holographic microscope installed on a cellphone does not utilize any lenses, lasers or other bulky optical components and it may offer a cost-effective tool for telemedicine applications to address various global health challenges.
Abstract: We demonstrate lensfree digital microscopy on a cellphone. This compact and light-weight holographic microscope installed on a cellphone does not utilize any lenses, lasers or other bulky optical components and it may offer a cost-effective tool for telemedicine applications to address various global health challenges. Weighing ∼38 grams (<1.4 ounces), this lensfree imaging platform can be mechanically attached to the camera unit of a cellphone where the samples are loaded from the side, and are vertically illuminated by a simple light-emitting diode (LED). This incoherent LED light is then scattered from each micro-object to coherently interfere with the background light, creating the lensfree hologram of each object on the detector array of the cellphone. These holographic signatures captured by the cellphone permit reconstruction of microscopic images of the objects through rapid digital processing. We report the performance of this lensfree cellphone microscope by imaging various sized micro-particles, as well as red blood cells, white blood cells, platelets and a waterborne parasite (Giardia lamblia).

476 citations

Journal ArticleDOI
TL;DR: This lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings.
Abstract: Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing ∼46 grams with dimensions smaller than 4.2 cm × 4.2 cm × 5.8 cm that achieves sub-cellular resolution over a large field of view of ∼24 mm2. This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings.

463 citations

Journal ArticleDOI
TL;DR: Providing real-time spatio-temporal statistics for the prevalence of various infectious diseases, this smart RDT reader platform running on cellphones might assist healthcare professionals and policymakers to track emerging epidemics worldwide and help epidemic preparedness.
Abstract: We demonstrate a cellphone-based rapid-diagnostic-test (RDT) reader platform that can work with various lateral flow immuno-chromatographic assays and similar tests to sense the presence of a target analyte in a sample. This compact and cost-effective digital RDT reader, weighing only ∼65 g, mechanically attaches to the existing camera unit of a cellphone, where various types of RDTs can be inserted to be imaged in reflection or transmission modes under light-emitting diode (LED)-based illumination. Captured raw images of these tests are then digitally processed (within less than 0.2 s per image) through a smart application running on the cellphone for validation of the RDT, as well as for automated reading of its diagnostic result. The same smart application then transmits the resulting data, together with the RDT images and other related information (e.g., demographic data), to a central server, which presents the diagnostic results on a world map through geo-tagging. This dynamic spatio-temporal map of various RDT results can then be viewed and shared using internet browsers or through the same cellphone application. We tested this platform using malaria, tuberculosis (TB) and HIV RDTs by installing it on both Android-based smartphones and an iPhone. Providing real-time spatio-temporal statistics for the prevalence of various infectious diseases, this smart RDT reader platform running on cellphones might assist healthcare professionals and policymakers to track emerging epidemics worldwide and help epidemic preparedness.

423 citations

Journal ArticleDOI
TL;DR: This results constitute the first-time that a lensfree on-chip microscope has successfully imaged malaria parasites and would be important for global health problems such as diagnosis of infectious diseases in remote locations.
Abstract: We report a portable lensless on-chip microscope that can achieve <1 µm resolution over a wide field-of-view of ∼24 mm2 without the use of any mechanical scanning. This compact on-chip microscope weighs ∼95 g and is based on partially coherent digital in-line holography. Multiple fiber-optic waveguides are butt-coupled to light emitting diodes, which are controlled by a low-cost micro-controller to sequentially illuminate the sample. The resulting lensfree holograms are then captured by a digital sensor-array and are rapidly processed using a pixel super-resolution algorithm to generate much higher resolution holographic images (both phase and amplitude) of the objects. This wide-field and high-resolution on-chip microscope, being compact and light-weight, would be important for global health problems such as diagnosis of infectious diseases in remote locations. Toward this end, we validate the performance of this field-portable microscope by imaging human malaria parasites (Plasmodium falciparum) in thin blood smears. Our results constitute the first-time that a lensfree on-chip microscope has successfully imaged malaria parasites.

278 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This review includes challenges to scaling up, commercialisation and regulatory issues, and the factors which limit paper-based microfluidic devices to become real world products and future directions are also identified.
Abstract: Dipstick and lateral-flow formats have dominated rapid diagnostics over the last three decades. These formats gained popularity in the consumer markets due to their compactness, portability and facile interpretation without external instrumentation. However, lack of quantitation in measurements has challenged the demand of existing assay formats in consumer markets. Recently, paper-based microfluidics has emerged as a multiplexable point-of-care platform which might transcend the capabilities of existing assays in resource-limited settings. However, paper-based microfluidics can enable fluid handling and quantitative analysis for potential applications in healthcare, veterinary medicine, environmental monitoring and food safety. Currently, in its early development stages, paper-based microfluidics is considered a low-cost, lightweight, and disposable technology. The aim of this review is to discuss: (1) fabrication of paper-based microfluidic devices, (2) functionalisation of microfluidic components to increase the capabilities and the performance, (3) introduction of existing detection techniques to the paper platform and (4) exploration of extracting quantitative readouts via handheld devices and camera phones. Additionally, this review includes challenges to scaling up, commercialisation and regulatory issues. The factors which limit paper-based microfluidic devices to become real world products and future directions are also identified.

1,658 citations

Journal ArticleDOI
30 Mar 2020-ACS Nano
TL;DR: Diagnostic and surveillance technologies for SARS-CoV-2 and their performance characteristics are described and point-of-care diagnostics that are on the horizon are described to encourage academics to advance their technologies beyond conception.
Abstract: COVID-19 has spread globally since its discovery in Hubei province, China in December 2019. A combination of computed tomography imaging, whole genome sequencing, and electron microscopy were initially used to screen and identify SARS-CoV-2, the viral etiology of COVID-19. The aim of this review article is to inform the audience of diagnostic and surveillance technologies for SARS-CoV-2 and their performance characteristics. We describe point-of-care diagnostics that are on the horizon and encourage academics to advance their technologies beyond conception. Developing plug-and-play diagnostics to manage the SARS-CoV-2 outbreak would be useful in preventing future epidemics.

1,335 citations

Journal ArticleDOI
07 Sep 2018-Science
TL;DR: 3D-printed D2NNs are created that implement classification of images of handwritten digits and fashion products, as well as the function of an imaging lens at a terahertz spectrum.
Abstract: Deep learning has been transforming our ability to execute advanced inference tasks using computers. Here we introduce a physical mechanism to perform machine learning by demonstrating an all-optical diffractive deep neural network (D2NN) architecture that can implement various functions following the deep learning-based design of passive diffractive layers that work collectively. We created 3D-printed D2NNs that implement classification of images of handwritten digits and fashion products, as well as the function of an imaging lens at a terahertz spectrum. Our all-optical deep learning framework can perform, at the speed of light, various complex functions that computer-based neural networks can execute; will find applications in all-optical image analysis, feature detection, and object classification; and will also enable new camera designs and optical components that perform distinctive tasks using D2NNs.

1,145 citations