scispace - formally typeset
Search or ask a question
Author

Onur Tanglay

Bio: Onur Tanglay is an academic researcher. The author has contributed to research in topics: Medicine & Tractography. The author has an hindex of 2, co-authored 10 publications receiving 22 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This study highlights the principal white-matter pathways of the ITG and demonstrates key underlying connections through DSI-based fibre tracking and presents a summary of the relevant clinical anatomy for this region of the cerebrum as part of a larger effort to understand it in its entirety.

48 citations

Journal ArticleDOI
TL;DR: In this article, a detailed understanding of the subcortical white matter tracts connected within the MFG can facilitate improved navigation of white matter lesions in and around this gyrus and explain the postoperative morbidity after surgery.

30 citations

Journal ArticleDOI
Abstract: Purpose Advances in neuroimaging have provided an understanding of the precuneus’(PCu) involvement in functions such as visuospatial processing and cognition. While the PCu has been previously determined to be apart of a higher-order default mode network (DMN), recent studies suggest the presence of possible dissociations from this model in order to explain the diverse functions the PCu facilitates, such as in episodic memory. An improved structural model of the white-matter anatomy of the PCu can demonstrate its unique cerebral connections with adjacent regions which can provide additional clarity on its role in integrating information across higher-order cerebral networks like the DMN. Furthermore, this information can provide clinically actionable anatomic information that can support clinical decision making to improve neurologic outcomes such as during cerebral surgery. Here, we sought to derive the relationship between the precuneus and underlying major white-mater bundles by characterizing its macroscopic connectivity. Methods Structural tractography was performed on twenty healthy adult controls from the Human Connectome Project (HCP) utilizing previously demonstrated methodology. All precuneus connections were mapped in both cerebral hemispheres and inter-hemispheric differences in resultant tract volumes were compared with an unpaired, corrected Mann–Whitney U test and a laterality index (LI) was completed. Ten postmortem dissections were then performed to serve as ground truth by using a modified Klingler technique with careful preservation of relevant white matter bundles. Results The precuneus is a heterogenous cortical region with five major types of connections that were present bilaterally. (1) Short association fibers connect the gyri of the precuneus and connect the precuneus to the superior parietal lobule and the occipital cortex. (2) Four distinct parts of the cingulum bundle connect the precuneus to the frontal lobe and the temporal lobe. (3) The middle longitudinal fasciculus from the precuneus connects to the superior temporal gyrus and the dorsolateral temporal pole. (4) Parietopontine fibers travel as part of the corticopontine fibers to connect the precuneus to pontine regions. (5) An extensive commissural bundle connects the precuneus bilaterally. Conclusion We present a summary of the anatomic connections of the precuneus as part of an effort to understand the function of the precuneus and highlight key white-matter pathways to inform surgical decision-making. Our findings support recent models suggesting unique fiber connections integrating at the precuneus which may suggest finer subsystems of the DMN or unique networks, but further study is necessary to refine our model in greater quantitative detail.

22 citations

Journal ArticleDOI
TL;DR: In this paper, the parahippocampal gyrus tracts were mapped in both hemispheres, and a lateralization index was calculated with resultant tract volumes based on the inferior longitudinal fasciculus and cingulum.

16 citations

Journal ArticleDOI
TL;DR: In this article, an activation likelihood estimation (ALE) was used to construct a preliminary model of the semantic network based on the cortical parcellation scheme previously published under the Human Connectome Project.
Abstract: Introduction The semantic network is an important mediator of language, enabling both speech production and the comprehension of multimodal stimuli. A major challenge in the field of neurosurgery is preventing semantic deficits. Multiple cortical areas have been linked to semantic processing, though knowledge of network connectivity has lacked anatomic specificity. Using attentional task-based fMRI studies, we built a neuroanatomical model of this network. Methods One hundred and fifty-five task-based fMRI studies related to categorization of visual words and objects, and auditory words and stories were used to generate an activation likelihood estimation (ALE). Cortical parcellations overlapping the ALE were used to construct a preliminary model of the semantic network based on the cortical parcellation scheme previously published under the Human Connectome Project. Deterministic fiber tractography was performed on 25 randomly chosen subjects from the Human Connectome Project, to determine the connectivity of the cortical parcellations comprising the network. Results The ALE analysis demonstrated fourteen left hemisphere cortical regions to be a part of the semantic network: 44, 45, 55b, IFJa, 8C, p32pr, SFL, SCEF, 8BM, STSdp, STSvp, TE1p, PHT, and PBelt. These regions showed consistent interconnections between parcellations. Notably, the anterior temporal pole, a region often implicated in semantic function, was absent from our model. Conclusions We describe a preliminary cortical model for the underlying structural connectivity of the semantic network. Future studies will further characterize the neurotractographic details of the semantic network in the context of medical application.

15 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review four concepts with detailed examples which will help us better understand post-operative cognitive outcomes and provide a guide for how to utilize connectomics to reduce cognitive morbidity following cerebral surgery.
Abstract: The surgical management of brain tumors is based on the principle that the extent of resection improves patient outcomes. Traditionally, neurosurgeons have considered that lesions in "non-eloquent" cerebrum can be more aggressively surgically managed compared to lesions in "eloquent" regions with more known functional relevance. Furthermore, advancements in multimodal imaging technologies have improved our ability to extend the rate of resection while minimizing the risk of inducing new neurologic deficits, together referred to as the "onco-functional balance." However, despite the common utilization of invasive techniques such as cortical mapping to identify eloquent tissue responsible for language and motor functions, glioma patients continue to present post-operatively with poor cognitive morbidity in higher-order functions. Such observations are likely related to the difficulty in interpreting the highly-dimensional information these technologies present to us regarding cognition in addition to our classically poor understanding of the functional and structural neuroanatomy underlying complex higher-order cognitive functions. Furthermore, reduction of the brain into isolated cortical regions without consideration of the complex, interacting brain networks which these regions function within to subserve higher-order cognition inherently prevents our successful navigation of true eloquent and non-eloquent cerebrum. Fortunately, recent large-scale movements in the neuroscience community, such as the Human Connectome Project (HCP), have provided updated neural data detailing the many intricate macroscopic connections between cortical regions which integrate and process the information underlying complex human behavior within a brain "connectome." Connectomic data can provide us better maps on how to understand convoluted cortical and subcortical relationships between tumor and human cerebrum such that neurosurgeons can begin to make more informed decisions during surgery to maximize the onco-functional balance. However, connectome-based neurosurgery and related applications for neurorehabilitation are relatively nascent and require further work moving forward to optimize our ability to add highly valuable connectomic data to our surgical armamentarium. In this manuscript, we review four concepts with detailed examples which will help us better understand post-operative cognitive outcomes and provide a guide for how to utilize connectomics to reduce cognitive morbidity following cerebral surgery.

35 citations

Journal ArticleDOI
TL;DR: The effective connectivity between 26 cortical regions implicated in language by a community analysis and 360 cortical regions was measured in 171 humans from the Human Connectome Project, and complemented with functional connectivity and diffusion tractography, all using the HCP multimodal parcellation atlas as mentioned in this paper .

23 citations

Journal ArticleDOI
TL;DR: In this article , the authors discuss methods for validating the various features of connectional anatomy that are extracted from diffusion MRI, both at the macro-scale (trajectories of axon bundles) and at microscale (axonal orientations and other microstructural properties) and present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label free optical imaging techniques, and others.

22 citations

Journal ArticleDOI
Abstract: Purpose Advances in neuroimaging have provided an understanding of the precuneus’(PCu) involvement in functions such as visuospatial processing and cognition. While the PCu has been previously determined to be apart of a higher-order default mode network (DMN), recent studies suggest the presence of possible dissociations from this model in order to explain the diverse functions the PCu facilitates, such as in episodic memory. An improved structural model of the white-matter anatomy of the PCu can demonstrate its unique cerebral connections with adjacent regions which can provide additional clarity on its role in integrating information across higher-order cerebral networks like the DMN. Furthermore, this information can provide clinically actionable anatomic information that can support clinical decision making to improve neurologic outcomes such as during cerebral surgery. Here, we sought to derive the relationship between the precuneus and underlying major white-mater bundles by characterizing its macroscopic connectivity. Methods Structural tractography was performed on twenty healthy adult controls from the Human Connectome Project (HCP) utilizing previously demonstrated methodology. All precuneus connections were mapped in both cerebral hemispheres and inter-hemispheric differences in resultant tract volumes were compared with an unpaired, corrected Mann–Whitney U test and a laterality index (LI) was completed. Ten postmortem dissections were then performed to serve as ground truth by using a modified Klingler technique with careful preservation of relevant white matter bundles. Results The precuneus is a heterogenous cortical region with five major types of connections that were present bilaterally. (1) Short association fibers connect the gyri of the precuneus and connect the precuneus to the superior parietal lobule and the occipital cortex. (2) Four distinct parts of the cingulum bundle connect the precuneus to the frontal lobe and the temporal lobe. (3) The middle longitudinal fasciculus from the precuneus connects to the superior temporal gyrus and the dorsolateral temporal pole. (4) Parietopontine fibers travel as part of the corticopontine fibers to connect the precuneus to pontine regions. (5) An extensive commissural bundle connects the precuneus bilaterally. Conclusion We present a summary of the anatomic connections of the precuneus as part of an effort to understand the function of the precuneus and highlight key white-matter pathways to inform surgical decision-making. Our findings support recent models suggesting unique fiber connections integrating at the precuneus which may suggest finer subsystems of the DMN or unique networks, but further study is necessary to refine our model in greater quantitative detail.

22 citations

Journal ArticleDOI
TL;DR: Using VBM and SBM together can help researchers and clinicians obtain a better understanding of normal neurobiological processes of the brain and may improve the accuracy of the detection of morphological changes when comparing the data of patients and controls.
Abstract: Surface-based morphometry (SBM) is extremely useful for estimating the indices of cortical morphology, such as volume, thickness, area, and gyrification, whereas voxel-based morphometry (VBM) is a typical method of gray matter (GM) volumetry that includes cortex measurement. In cases where SBM is used to estimate cortical morphology, it remains controversial as to whether VBM should be used in addition to estimate GM volume. Therefore, this review has two main goals. First, we summarize the differences between the two methods regarding preprocessing, statistical analysis, and reliability. Second, we review studies that estimate cortical morphological changes using VBM and/or SBM and discuss whether using VBM in conjunction with SBM produces additional values. We found cases in which detection of morphological change in either VBM or SBM was superior, and others that showed equivalent performance between the two methods. Therefore, we concluded that using VBM and SBM together can help researchers and clinicians obtain a better understanding of normal neurobiological processes of the brain. Moreover, the use of both methods may improve the accuracy of the detection of morphological changes when comparing the data of patients and controls. In addition, we introduce two other recent methods as future directions for estimating cortical morphological changes: a multi-modal parcellation method using structural and functional images, and a synthetic segmentation method using multi-contrast images (such as T1- and proton density-weighted images).

19 citations