scispace - formally typeset
Search or ask a question
Author

Ora Lassila

Bio: Ora Lassila is an academic researcher from Nokia. The author has contributed to research in topics: Semantic Web Stack & Semantic Web. The author has an hindex of 25, co-authored 46 publications receiving 14970 citations.

Papers
More filters
Proceedings Article
30 Jul 2001
TL;DR: The overall structure of the ontology, the service profile for advertising services, and the process model for the detailed description of the operation of services are described, which compare DAML-S with several industry efforts to define standards for characterizing services on the Web.
Abstract: The Semantic Web should enable greater access not only to content but also to services on the Web. Users and software agents should be able to discover, invoke, compose, and monitor Web resources offering particular services and having particular properties. As part of the DARPA Agent Markup Language program, we have begun to develop an ontology of services, called DAML-S, that will make these functionalities possible. In this paper we describe the overall structure of the ontology, the service profile for advertising services, and the process model for the detailed description of the operation of services. We also compare DAML-S with several industry efforts to define standards for characterizing services on the Web.

3,061 citations

Book ChapterDOI
09 Jun 2002
TL;DR: DAML-S is presented, a DAML+OIL ontology for describing the properties and capabilities of Web Services, and three aspects of the ontology are described: the service profile, the process model, and the service grounding.
Abstract: In this paper we present DAML-S, a DAML+OIL ontology for describing the properties and capabilities of Web Services. Web Services - Web-accessible programs and devices - are garnering a great deal of interest from industry, and standards are emerging for low-level descriptions of Web Services. DAML-S complements this effort by providing Web Service descriptions at the application layer, describing what a service can do, and not just how it does it. In this paper we describe three aspects of our ontology: the service profile, the process model, and the service grounding. The paper focuses on the grounding, which connects our ontology with low-level XML-based descriptions of Web Services.

1,018 citations

Journal ArticleDOI
TL;DR: This paper considers how the semantic Web will provide intelligent access to heterogeneous and distributed information, enabling software products (agents) to mediate between user needs and available information sources.
Abstract: The Web has drastically changed the availability of electronic information, but its success and exponential growth have made it increasingly difficult to find, access, present and maintain such information for a wide variety of users. In reaction to this bottleneck many new research initiatives and commercial enterprises have been set up to enrich available information with machine-processable semantics. The paper considers how the semantic Web will provide intelligent access to heterogeneous and distributed information, enabling software products (agents) to mediate between user needs and available information sources. The paper discusses the Resource Description Framework, XML and other languages.

455 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
Jeffrey O. Kephart1, David M. Chess1
TL;DR: A 2001 IBM manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet.
Abstract: A 2001 IBM manifesto observed that a looming software complexity crisis -caused by applications and environments that number into the tens of millions of lines of code - threatened to halt progress in computing. The manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet. Autonomic computing, perhaps the most attractive approach to solving this problem, creates systems that can manage themselves when given high-level objectives from administrators. Systems manage themselves according to an administrator's goals. New components integrate as effortlessly as a new cell establishes itself in the human body. These ideas are not science fiction, but elements of the grand challenge to create self-managing computing systems.

6,527 citations

Journal ArticleDOI
TL;DR: The authors describe progress to date in publishing Linked Data on the Web, review applications that have been developed to exploit the Web of Data, and map out a research agenda for the Linked data community as it moves forward.
Abstract: The term “Linked Data” refers to a set of best practices for publishing and connecting structured data on the Web. These best practices have been adopted by an increasing number of data providers over the last three years, leading to the creation of a global data space containing billions of assertions— the Web of Data. In this article, the authors present the concept and technical principles of Linked Data, and situate these within the broader context of related technological developments. They describe progress to date in publishing Linked Data on the Web, review applications that have been developed to exploit the Web of Data, and map out a research agenda for the Linked Data community as it moves forward.

5,113 citations