scispace - formally typeset
Search or ask a question
Author

Oren Parnas

Bio: Oren Parnas is an academic researcher from Broad Institute. The author has contributed to research in topics: CRISPR & Biology. The author has an hindex of 16, co-authored 21 publications receiving 5136 citations. Previous affiliations of Oren Parnas include Tel Aviv University & Duke University.
Topics: CRISPR, Biology, Medicine, Gene, Cas9

Papers
More filters
Journal ArticleDOI
09 Oct 2014-Cell
TL;DR: In vivo as well as ex vivo genome editing using adeno-associated virus, lentivirus, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells is demonstrated, suggesting that Cas9 mice empower a wide range of biological and disease modeling applications.

1,476 citations

01 Sep 2014
TL;DR: In this paper, a Cre-dependent Cas9 knockin mouse was used to study the dynamics of KRAS, p53, and LKB1, the top three significantly mutated genes in lung adenocarcinoma.
Abstract: CRISPR-Cas9 is a versatile genome editing technology for studying the functions of genetic elements. To broadly enable the application of Cas9 in vivo, we established a Cre-dependent Cas9 knockin mouse. We demonstrated in vivo as well as ex vivo genome editing using adeno-associated virus (AAV)-, lentivirus-, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells. Using these mice, we simultaneously modeled the dynamics of KRAS, p53, and LKB1, the top three significantly mutated genes in lung adenocarcinoma. Delivery of a single AAV vector in the lung generated loss-of-function mutations in p53 and Lkb1, as well as homology-directed repair-mediated KrasG12D mutations, leading to macroscopic tumors of adenocarcinoma pathology. Together, these results suggest that Cas9 mice empower a wide range of biological and disease modeling applications.

1,216 citations

Journal ArticleDOI
15 Dec 2016-Cell
TL;DR: Perturb-seq as mentioned in this paper combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbation to be profiled in pooled format.

727 citations

01 Dec 2016
TL;DR: Insight is provided into how the three sensors of ER homeostasis monitor distinct types of stress and the ability of Perturb-seq to dissect complex cellular responses are highlighted.
Abstract: Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.

593 citations


Cited by
More filters
Journal ArticleDOI
13 Jun 2019-Cell
TL;DR: A strategy to "anchor" diverse datasets together, enabling us to integrate single-cell measurements not only across scRNA-seq technologies, but also across different modalities.

7,892 citations

Journal ArticleDOI
TL;DR: This work presents Scanpy, a scalable toolkit for analyzing single-cell gene expression data that includes methods for preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene regulatory networks, and AnnData, a generic class for handling annotated data matrices.
Abstract: Scanpy is a scalable toolkit for analyzing single-cell gene expression data. It includes methods for preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene regulatory networks. Its Python-based implementation efficiently deals with data sets of more than one million cells ( https://github.com/theislab/Scanpy ). Along with Scanpy, we present AnnData, a generic class for handling annotated data matrices ( https://github.com/theislab/anndata ).

3,343 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Posted ContentDOI
02 Nov 2018-bioRxiv
TL;DR: This work presents a strategy for comprehensive integration of single cell data, including the assembly of harmonized references, and the transfer of information across datasets, and demonstrates how anchoring can harmonize in-situ gene expression and scRNA-seq datasets.
Abstract: Single cell transcriptomics (scRNA-seq) has transformed our ability to discover and annotate cell types and states, but deep biological understanding requires more than a taxonomic listing of clusters. As new methods arise to measure distinct cellular modalities, including high-dimensional immunophenotypes, chromatin accessibility, and spatial positioning, a key analytical challenge is to integrate these datasets into a harmonized atlas that can be used to better understand cellular identity and function. Here, we develop a computational strategy to "anchor" diverse datasets together, enabling us to integrate and compare single cell measurements not only across scRNA-seq technologies, but different modalities as well. After demonstrating substantial improvement over existing methods for data integration, we anchor scRNA-seq experiments with scATAC-seq datasets to explore chromatin differences in closely related interneuron subsets, and project single cell protein measurements onto a human bone marrow atlas to annotate and characterize lymphocyte populations. Lastly, we demonstrate how anchoring can harmonize in-situ gene expression and scRNA-seq datasets, allowing for the transcriptome-wide imputation of spatial gene expression patterns, and the identification of spatial relationships between mapped cell types in the visual cortex. Our work presents a strategy for comprehensive integration of single cell data, including the assembly of harmonized references, and the transfer of information across datasets. Availability: Installation instructions, documentation, and tutorials are available at: https://www.satijalab.org/seurat

2,037 citations

Journal ArticleDOI
30 Nov 2017-Cell
TL;DR: The expanded CMap is reported, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that is shown to be highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts.

1,943 citations