scispace - formally typeset
Search or ask a question
Author

Oren Patashnik

Other affiliations: Bell Labs
Bio: Oren Patashnik is an academic researcher from Stanford University. The author has contributed to research in topics: Graph (abstract data type) & Null graph. The author has an hindex of 6, co-authored 9 publications receiving 4562 citations. Previous affiliations of Oren Patashnik include Bell Labs.

Papers
More filters
Book
01 Jan 1994
TL;DR: This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms, and is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it!
Abstract: From the Publisher: This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use ofthe first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.

2,318 citations

Journal ArticleDOI
TL;DR: Concrete Mathematics as discussed by the authors is a collection of techniques for solving problems in computer science, and it is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline.
Abstract: From the Publisher: This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. \"More concretely,\" the authors explain, \"it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems.\" The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use ofthe first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.

2,307 citations

Journal ArticleDOI
Oren Patashnik1
TL;DR: Pruning the game tree of three-dimensional tic-tac-toe makes possible a computer-aided proof that the first player can always win.
Abstract: Pruning the game tree of three-dimensional tic-tac-toe makes possible a computer-aided proof that the first player can always win.

49 citations

Book
01 Aug 1988

20 citations

01 Jan 1990
TL;DR: This thesis translates the combinational circuit into a directed acyclic graph, and it proves that the resulting graph theory problem is in general NP-complete.
Abstract: This thesis explores a graph theory problem that arises from a circuit-testing problem: Find an optimal segmentation for the pseudo-exhaustive testing of a combinational circuit. It translates the combinational circuit into a directed acyclic graph, and it proves that the resulting graph theory problem is in general NP-complete. Then it examines restricted versions of the problem--the number of segments might be limited, the fan-in or fan-out might be limited, or the graph might be otherwise constrained. It shows that although many restricted versions, too, are NP-complete, certain versions yield polynomial-time dynamic programming algorithms, and a reasonably well-defined boundary emerges between the two. Finally it considers approximating an optimal segmentation, and it shows in general that, unless P = NP, every polynomial-time algorithm for finding a segmentation will in the worst case be off from optimal by essentially an exponential factor.

17 citations


Cited by
More filters
Book
01 Dec 2008
TL;DR: Markov Chains and Mixing Times as mentioned in this paper is an introduction to the modern approach to the theory of Markov chains and its application in the field of probability theory and linear algebra, where the main goal is to determine the rate of convergence of a Markov chain to the stationary distribution.
Abstract: This book is an introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space. The authors develop the key tools for estimating convergence times, including coupling, strong stationary times, and spectral methods. Whenever possible, probabilistic methods are emphasized. The book includes many examples and provides brief introductions to some central models of statistical mechanics. Also provided are accounts of random walks on networks, including hitting and cover times, and analyses of several methods of shuffling cards. As a prerequisite, the authors assume a modest understanding of probability theory and linear algebra at an undergraduate level. ""Markov Chains and Mixing Times"" is meant to bring the excitement of this active area of research to a wide audience.

2,573 citations

Book
01 Jan 2000
TL;DR: This book provides the first comprehensive introduction to Dynamic Logic, a system of remarkable unity that is theoretically rich as well as of practical value.
Abstract: From the Publisher: Among the many approaches to formal reasoning about programs, Dynamic Logic enjoys the singular advantage of being strongly related to classical logic. Its variants constitute natural generalizations and extensions of classical formalisms. For example, Propositional Dynamic Logic (PDL) can be described as a blend of three complementary classical ingredients: propositional calculus, modal logic, and the algebra of regular events. In First-Order Dynamic Logic (DL), the propositional calculus is replaced by classical first-order predicate calculus. Dynamic Logic is a system of remarkable unity that is theoretically rich as well as of practical value. It can be used for formalizing correctness specifications and proving rigorously that those specifications are met by a particular program. Other uses include determining the equivalence of programs, comparing the expressive power of various programming constructs, and synthesizing programs from specifications. This book provides the first comprehensive introduction to Dynamic Logic. It is divided into three parts. The first part reviews the appropriate fundamental concepts of logic and computability theory and can stand alone as an introduction to these topics. The second part discusses PDL and its variants, and the third part discusses DL and its variants. Examples are provided throughout, and exercises and a short historical section are included at the end of each chapter.

1,631 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, Frederico Arroja4  +321 moreInstitutions (79)
TL;DR: In this article, the authors present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey.
Abstract: We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be ns = 0.968 ± 0.006 and tightly constrain its scale dependence to dns/ dlnk = −0.003 ± 0.007 when combined with the Planck lensing likelihood. When the Planck high-l polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r0.002< 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r< 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(φ) ∝ φ2 and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth over the range of scales 0.008 Mpc-1 ≲ k ≲ 0.1 Mpc-1. At large scales, each method finds deviations from a power law, connected to a deficit at multipoles l ≈ 20−40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Λ cold dark matter (ΛCDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is | αnon - adi | < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum findingthat the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations.

1,401 citations

Book
21 Dec 2009
TL;DR: The theory of random matrices plays an important role in many areas of pure mathematics and employs a variety of sophisticated mathematical tools (analytical, probabilistic and combinatorial) as mentioned in this paper.
Abstract: The theory of random matrices plays an important role in many areas of pure mathematics and employs a variety of sophisticated mathematical tools (analytical, probabilistic and combinatorial). This diverse array of tools, while attesting to the vitality of the field, presents several formidable obstacles to the newcomer, and even the expert probabilist. This rigorous introduction to the basic theory is sufficiently self-contained to be accessible to graduate students in mathematics or related sciences, who have mastered probability theory at the graduate level, but have not necessarily been exposed to advanced notions of functional analysis, algebra or geometry. Useful background material is collected in the appendices and exercises are also included throughout to test the reader's understanding. Enumerative techniques, stochastic analysis, large deviations, concentration inequalities, disintegration and Lie algebras all are introduced in the text, which will enable readers to approach the research literature with confidence.

1,289 citations

Journal ArticleDOI
TL;DR: In this paper, the question of how many entangled or separable states there are in the set of all quantum states is considered, and a natural measure in the space of density matrices is proposed to describe $N$-dimensional quantum systems.
Abstract: The question of how many entangled or, respectively, separable states there are in the set of all quantum states is considered. We propose a natural measure in the space of density matrices $\ensuremath{\varrho}$ describing $N$-dimensional quantum systems. We prove that, under this measure, the set of separable states possesses a nonzero volume. Analytical lower and upper bounds of this volume are also derived for $N=2\ifmmode\times\else\texttimes\fi{}2$ and $N=2\ifmmode\times\else\texttimes\fi{}3$ cases. Finally, numerical Monte Carlo calculations allow us to estimate the volume of separable states, providing numerical evidence that it decreases exponentially with the dimension of the composite system. We have also analyzed a conditional measure of separability under the condition of fixed purity. Our results display a clear dualism between purity and separability: entanglement is typical of pure states, while separability is connected with quantum mixtures. In particular, states of sufficiently low purity are necessarily separable.

1,232 citations