scispace - formally typeset
Search or ask a question
Author

Ori Gerstel

Bio: Ori Gerstel is an academic researcher from Cisco Systems, Inc.. The author has contributed to research in topics: Wavelength-division multiplexing & Multiwavelength optical networking. The author has an hindex of 24, co-authored 77 publications receiving 4038 citations. Previous affiliations of Ori Gerstel include Technion – Israel Institute of Technology & Tellabs.


Papers
More filters
Journal ArticleDOI
TL;DR: The drivers, building blocks, architecture, and enabling technologies for a whole new elastic optical networking paradigm are described, as well as early standardization efforts.
Abstract: Optical networks are undergoing significant changes, fueled by the exponential growth of traffic due to multimedia services and by the increased uncertainty in predicting the sources of this traffic due to the ever changing models of content providers over the Internet. The change has already begun: simple on-off modulation of signals, which was adequate for bit rates up to 10 Gb/s, has given way to much more sophisticated modulation schemes for 100 Gb/s and beyond. The next bottleneck is the 10-year-old division of the optical spectrum into a fixed "wavelength grid," which will no longer work for 400 Gb/s and above, heralding the need for a more flexible grid. Once both transceivers and switches become flexible, a whole new elastic optical networking paradigm is born. In this article we describe the drivers, building blocks, architecture, and enabling technologies for this new paradigm, as well as early standardization efforts.

1,448 citations

Proceedings ArticleDOI
29 Mar 1998
TL;DR: Two other OWDM ring networks are considered that are nonblocking, where one has a wide sense non blocking property and the other has a rearrangeably nonblocking property, which are compared using the cost criteria of number of wavelengths and number of transceivers.
Abstract: We provide network designs for optical wavelength division multiplexed (OWDM) rings that minimize overall network cost, rather than just the number of wavelengths needed. The network cost includes the cost of the transceivers required at the nodes as well as the number of wavelengths. The transceiver cost includes the cost of terminating equipment as well as higher-layer electronic processing equipment, and in practice, can dominate over the cost of the number of wavelengths in the network. The networks support dynamic (time varying) traffic streams that are at lower rates (e.g., OC-3, 155 Mb/s) than the lightpath capacities (e.g., OC-48, 2.5 Gb/s). A simple OWDM ring is the point-to-point ring, where traffic is transported on WDM links optically, but switched through nodes electronically. Although the network is efficient in using link bandwidth, it has high electronic and opto-electronic processing costs. Two OWDM ring networks are given that have similar performance but are less expensive. Two other OWDM ring networks are considered that are nonblocking, where one has a wide sense nonblocking property and the other has a rearrangeably nonblocking property. All the networks are compared using the cost criteria of number of wavelengths and number of transceivers.

279 citations

Journal ArticleDOI
TL;DR: This article provides a perspective on optical layer protection and restoration based on the services offered by carriers using the optical layer, which provides a way to distinguish between protection schemes based on implementation costs and the associated services enabled by the protection scheme.
Abstract: This article provides a perspective on optical layer protection and restoration based on the services offered by carriers using the optical layer. This is different from other viewpoints that provide a taxonomy of protection techniques in a more abstract fashion for the purposes of standardization. The latter viewpoints are mostly based on the classification adopted in the SONET/SDH standards. In contrast, taking a services-based view provides a way to distinguish between protection schemes based on implementation costs and the associated services enabled by the protection scheme.

244 citations

Journal ArticleDOI
TL;DR: Two OADM ring networks are given that have similar performance but are less expensive and two others are considered that are nonblocking, where one has a wide-sense non blocking property and the other has a rearrangeably nonblocking property.
Abstract: We provide network designs for optical add-drop wavelength-division-multiplexed (OADM) rings that minimize overall network cost, rather than just the number of wavelengths needed. The network cost includes the cost of the transceivers required at the nodes as well as the number of wavelengths. The transceiver cost includes the cost of terminating equipment as well as higher-layer electronic processing equipment, which in practice can dominate over the cost of the number of wavelengths in the network. The networks support dynamic (i.e., time-varying) traffic streams that are at lower rates (e.g., OC-3, 155 Mb/s) than the lightpath capacities (e.g., OC-48, 2.5 Gb/s). A simple OADM ring is the point-to-point ring, where traffic is transported on WDM links optically, but switched through nodes electronically. Although the network is efficient in using link bandwidth, it has high electronic and opto-electronic processing costs. Two OADM ring networks are given that have similar performance but are less expensive. Two other OADM ring networks are considered that are nonblocking, where one has a wide-sense nonblocking property and the other has a rearrangeably nonblocking property. All the networks are compared using the cost criteria of number of wavelengths and number of transceivers.

238 citations

Journal ArticleDOI
TL;DR: The factors that affect the complexity of optical protection schemes, such as supporting mesh instead of ring protection, handling low-priority traffic, and dealing with multiple types of failures are discussed.
Abstract: This paper looks at several aspects of optical layer protection techniques from an implementation perspective. We discuss the factors that affect the complexity of optical protection schemes, such as supporting mesh instead of ring protection, handling low-priority traffic, and dealing with multiple types of failures. The paper also looks at how the client layer interacts with the optical layer with respect to protection, in terms of how client connections are mapped into the optical layer, and how protection schemes in both layers can work together in efficient ways. Finally, we describe several interesting optical protection implementations, focusing on the ones that are different from conventional SONET-like implementations.

194 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The concept of software defined multiple access (SoDeMA) is proposed, which enables adaptive configuration of available multiple access schemes to support diverse services and applications in future 5G networks.
Abstract: The increasing demand of mobile Internet and the Internet of Things poses challenging requirements for 5G wireless communications, such as high spectral efficiency and massive connectivity. In this article, a promising technology, non-orthogonal multiple access (NOMA), is discussed, which can address some of these challenges for 5G. Different from conventional orthogonal multiple access technologies, NOMA can accommodate much more users via nonorthogonal resource allocation. We divide existing dominant NOMA schemes into two categories: power-domain multiplexing and code-domain multiplexing, and the corresponding schemes include power-domain NOMA, multiple access with low-density spreading, sparse code multiple access, multi-user shared access, pattern division multiple access, and so on. We discuss their principles, key features, and pros/cons, and then provide a comprehensive comparison of these solutions from the perspective of spectral efficiency, system performance, receiver complexity, and so on. In addition, challenges, opportunities, and future research trends for NOMA design are highlighted to provide some insight on the potential future work for researchers in this field. Finally, to leverage different multiple access schemes including both conventional OMA and new NOMA, we propose the concept of software defined multiple access (SoDeMA), which enables adaptive configuration of available multiple access schemes to support diverse services and applications in future 5G networks.

2,512 citations

01 Jan 2000
TL;DR: In this paper, a distributed relative capacity loss (DRCL) scheme is proposed for wavelength-routed optical WDM networks, which works well in distributed controlled networks and demonstrates the performance of DRCL through simulation.
Abstract: This study focuses on the routing and WavelengthAssignment (RWA) problem in wavelength-routed optical WDM networks. Most of the attention is devoted to such networks operating under the wavelength-continuity constraint, in which lightpaths are set up for connection requests between node pairs, and a single lightpath must occupy the same wavelength on all of the links that it spans. In setting up a lightpath, a route must be selected and a wavelength must be assigned to the lightpath. If no wavelength is available for this lightpath on the selected route, then the connection request is blocked. We examine the RWA problem and review various routing approaches and wavelengthassignment approaches proposed in the literature. We also briefly consider the characteristics of wavelength-converted networks (which do not have the wavelength-continuity constraint), and we examine the associated research problems and challenges. Finally, we propose a new wavelengthassignment scheme, called Distributed Relative Capacity Loss (DRCL), which works well in distributed-controlled networks, and we demonstrate the performance of DRCL through simulation.

1,723 citations

Journal ArticleDOI
TL;DR: The drivers, building blocks, architecture, and enabling technologies for a whole new elastic optical networking paradigm are described, as well as early standardization efforts.
Abstract: Optical networks are undergoing significant changes, fueled by the exponential growth of traffic due to multimedia services and by the increased uncertainty in predicting the sources of this traffic due to the ever changing models of content providers over the Internet. The change has already begun: simple on-off modulation of signals, which was adequate for bit rates up to 10 Gb/s, has given way to much more sophisticated modulation schemes for 100 Gb/s and beyond. The next bottleneck is the 10-year-old division of the optical spectrum into a fixed "wavelength grid," which will no longer work for 400 Gb/s and above, heralding the need for a more flexible grid. Once both transceivers and switches become flexible, a whole new elastic optical networking paradigm is born. In this article we describe the drivers, building blocks, architecture, and enabling technologies for this new paradigm, as well as early standardization efforts.

1,448 citations

Book
01 Jan 2004
TL;DR: Throughout, the authors focus on the traffic demands encountered in the real world of network design, and their generic approach allows problem formulations and solutions to be applied across the board to virtually any type of backbone communication or computer network.
Abstract: In network design, the gap between theory and practice is woefully broad. This book narrows it, comprehensively and critically examining current network design models and methods. You will learn where mathematical modeling and algorithmic optimization have been under-utilized. At the opposite extreme, you will learn where they tend to fail to contribute to the twin goals of network efficiency and cost-savings. Most of all, you will learn precisely how to tailor theoretical models to make them as useful as possible in practice. Throughout, the authors focus on the traffic demands encountered in the real world of network design. Their generic approach, however, allows problem formulations and solutions to be applied across the board to virtually any type of backbone communication or computer network. For beginners, this book is an excellent introduction. For seasoned professionals, it provides immediate solutions and a strong foundation for further advances in the use of mathematical modeling for network design. (Less)

1,093 citations

Journal ArticleDOI
TL;DR: The Wiener index W is the sum of distances between all pairs of vertices of a (connected) graph as discussed by the authors, defined as the distance between all vertices in a graph.
Abstract: The Wiener index W is the sum of distances between all pairs of vertices of a (connected) graph. The paper outlines the results known for W of trees: methods for computation of W and combinatorial expressions for W for various classes of trees, the isomorphism–discriminating power of W, connections between W and the center and centroid of a tree, as well as between W and the Laplacian eigenvalues, results on the Wiener indices of the line graphs of trees, on trees extremal w.r.t. W, and on integers which cannot be Wiener indices of trees. A few conjectures and open problems are mentioned, as well as the applications of W in chemistry, communication theory and elsewhere.

1,015 citations