scispace - formally typeset
Search or ask a question
Author

Orlando J. Rojas

Bio: Orlando J. Rojas is an academic researcher from Aalto University. The author has contributed to research in topics: Cellulose & Materials science. The author has an hindex of 71, co-authored 512 publications receiving 23344 citations. Previous affiliations of Orlando J. Rojas include University of British Columbia & Auburn University.


Papers
More filters
Journal ArticleDOI
TL;DR: Dr. Youssef Habibi’s research interests include the sustainable production of materials from biomass, development of high performance nanocomposites from lignocellulosic materials, biomass conversion technologies, and the application of novel analytical tools in biomass research.
Abstract: Cellulose constitutes the most abundant renewable polymer resource available today. As a chemical raw material, it is generally well-known that it has been used in the form of fibers or derivatives for nearly 150 years for a wide spectrum of products and materials in daily life. What has not been known until relatively recently is that when cellulose fibers are subjected to acid hydrolysis, the fibers yield defect-free, rod-like crystalline residues. Cellulose nanocrystals (CNs) have garnered in the materials community a tremendous level of attention that does not appear to be relenting. These biopolymeric assemblies warrant such attention not only because of their unsurpassed quintessential physical and chemical properties (as will become evident in the review) but also because of their inherent renewability and sustainability in addition to their abundance. They have been the subject of a wide array of research efforts as reinforcing agents in nanocomposites due to their low cost, availability, renewability, light weight, nanoscale dimension, and unique morphology. Indeed, CNs are the fundamental constitutive polymeric motifs of macroscopic cellulosic-based fibers whose sheer volume dwarfs any known natural or synthetic biomaterial. Biopolymers such as cellulose and lignin and † North Carolina State University. ‡ Helsinki University of Technology. Dr. Youssef Habibi is a research assistant professor at the Department of Forest Biomaterials at North Carolina State University. He received his Ph.D. in 2004 in organic chemistry from Joseph Fourier University (Grenoble, France) jointly with CERMAV (Centre de Recherche sur les Macromolecules Vegetales) and Cadi Ayyad University (Marrakesh, Morocco). During his Ph.D., he worked on the structural characterization of cell wall polysaccharides and also performed surface chemical modification, mainly TEMPO-mediated oxidation, of crystalline polysaccharides, as well as their nanocrystals. Prior to joining NCSU, he worked as assistant professor at the French Engineering School of Paper, Printing and Biomaterials (PAGORA, Grenoble Institute of Technology, France) on the development of biodegradable nanocomposites based on nanocrystalline polysaccharides. He also spent two years as postdoctoral fellow at the French Institute for Agricultural Research, INRA, where he developed new nanostructured thin films based on cellulose nanowiskers. Dr. Habibi’s research interests include the sustainable production of materials from biomass, development of high performance nanocomposites from lignocellulosic materials, biomass conversion technologies, and the application of novel analytical tools in biomass research. Chem. Rev. 2010, 110, 3479–3500 3479

4,664 citations

Journal Article
TL;DR: A review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications as mentioned in this paper.
Abstract: Because of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.

778 citations

Journal ArticleDOI
03 Feb 2021-Nature
TL;DR: This work explores the use of fibrillated cellulose in the fabrication of materials ranging from composites and macrofibres, to thin films, porous membranes and gels, and discusses research directions for the practical exploitation of these structures.
Abstract: Cellulose is the most abundant biopolymer on Earth, found in trees, waste from agricultural crops and other biomass The fibres that comprise cellulose can be broken down into building blocks, known as fibrillated cellulose, of varying, controllable dimensions that extend to the nanoscale Fibrillated cellulose is harvested from renewable resources, so its sustainability potential combined with its other functional properties (mechanical, optical, thermal and fluidic, for example) gives this nanomaterial unique technological appeal Here we explore the use of fibrillated cellulose in the fabrication of materials ranging from composites and macrofibres, to thin films, porous membranes and gels We discuss research directions for the practical exploitation of these structures and the remaining challenges to overcome before fibrillated cellulose materials can reach their full potential Finally, we highlight some key issues towards successful manufacturing scale-up of this family of materials

517 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce recent advances in the development of cellulose nanomaterials and the construction of high order structures by applying some principles of colloid and interface science.
Abstract: In this review we introduce recent advances in the development of cellulose nanomaterials and the construction of high order structures by applying some principles of colloid and interface science. These efforts take advantage of natural assemblies in the form of fibers that nature constructs by a biogenetic bottom-up process that results in hierarchical systems encompassing a wide range of characteristic sizes. Following the reverse process, a top-down deconstruction, cellulose materials can be cleaved from fiber cell walls. The resulting nanocelluloses, mainly cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC, i.e., defect-free, rod-like crystalline residues after acid hydrolysis of fibers), have been the subject of recent interest. This originates from the appealing intrinsic properties of nanocelluloses: nanoscale dimensions, high surface area, morphology, low density, chirality and thermo-mechanical performance. Directing their assembly into multiphase structures is a quest that can yield useful outcomes in many revolutionary applications. As such, we discuss the use of non-specific forces to create thin films of nanocellulose at the air–solid interface for applications in nano-coatings, sensors, etc. Assemblies at the liquid–liquid and air–liquid interfaces will be highlighted as means to produce Pickering emulsions, foams and aerogels. Finally, the prospects of a wide range of hybrid materials and other systems that can be manufactured via self and directed assembly will be introduced in light of the unique properties of nanocelluloses.

508 citations

Journal ArticleDOI
TL;DR: The elastic modulus of the nanocomposite mats increased significantly as a consequence of the reinforcing effect of CNs via the percolation network held by hydrogen bonds, but this organization-driven crystallization was limited as observed by the reduction in the degree of crystallinity of the CN-loaded composite fibers.

490 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them, and summarizes cellulOSE nanoparticles in terms of particle morphology, crystal structure, and properties.
Abstract: This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction cellulose composites. Additionally, advances in predictive modeling from molecular dynamic simulations of crystalline cellulose to the continuum modeling of composites made with such particles are reviewed (392 references).

4,920 citations