scispace - formally typeset
Search or ask a question
Author

Ortwin Hess

Bio: Ortwin Hess is an academic researcher from Trinity College, Dublin. The author has contributed to research in topics: Metamaterial & Semiconductor laser theory. The author has an hindex of 48, co-authored 372 publications receiving 10024 citations. Previous affiliations of Ortwin Hess include University of Marburg & Imperial College London.


Papers
More filters
Journal ArticleDOI
07 Jul 2016-Nature
TL;DR: Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.
Abstract: Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter1, 2, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host–guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light–matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

1,367 citations

Dataset
18 Mar 2016
TL;DR: The experimental data taken in the NanoPhotonics Group at the Cavendish Laboratory (University of Cambridge) collected between 1/10/2014 to 1/02/2016 were used in this paper for single-molecule strong coupling at room temperature in plasmonic nanocavities.
Abstract: The experimental data taken in the NanoPhotonics Group at the Cavendish Laboratory (University of Cambridge), collected between 01/10/2014 to 01/02/2016. Simulations performed at the Blackett Laboratory, Department of Physics (Imperial College, London) and at the Department of Chemistry (King’s College London). Dataset for accepted journal article "Single-molecule strong coupling at room temperature in plasmonic nanocavities"

979 citations

Journal ArticleDOI
15 Nov 2007-Nature
TL;DR: It is demonstrated theoretically that an axially varying heterostructure with a metamaterial core of negative refractive index can be used to efficiently and coherently bring light to a complete standstill, and allows for high in-coupling efficiencies and broadband, room-temperature operation.
Abstract: Metamaterials — transparent materials containing tiny metallic inclusions of various shapes and arrangements — cause light to propagate in unusual ways. Now a new, theoretical metamaterial architecture is proposed, with the potential to bring light to a complete standstill. In contrast to previous methods of decelerating and storing light, this scheme simultaneously allows both high in-coupling efficiency and broadband, room-temperature operation. At a critical point a light ray is prevented from propagating; each frequency component (or colour) of the wave stops at a slightly different place, leading to the formation of a 'trapped rainbow'. This work bridges the gap between two important contemporary realms of science, metamaterials and slow light, and may lead to applications in optical data processing and storage or the realization of quantum optical memories. Light usually propagates inside transparent materials in well known ways1. However, recent research2,3,4,5,6 has examined the possibility of modifying the way the light travels by taking a normal transparent dielectric and inserting tiny metallic inclusions of various shapes and arrangements. As light passes through these structures, oscillating electric currents are set up that generate electromagnetic field moments; these can lead to dramatic effects on the light propagation, such as negative refraction. Possible applications include lenses that break traditional diffraction limits3,4 and ‘invisibility cloaks’ (refs 5, 6). Significantly less research has focused on the potential of such structures for slowing, trapping and releasing light signals. Here we demonstrate theoretically that an axially varying heterostructure with a metamaterial core of negative refractive index can be used to efficiently and coherently bring light to a complete standstill. In contrast to previous approaches for decelerating and storing light7,8,9,10,11,12,13, the present scheme simultaneously allows for high in-coupling efficiencies and broadband, room-temperature operation. Surprisingly, our analysis reveals a critical point at which the effective thickness of the waveguide is reduced to zero, preventing the light wave from propagating further. At this point, the light ray is permanently trapped, its trajectory forming a double light-cone that we call an ‘optical clepsydra’. Each frequency component of the wave packet is stopped at a different guide thickness, leading to the spatial separation of its spectrum and the formation of a ‘trapped rainbow’. Our results bridge the gap between two important contemporary realms of science—metamaterials and slow light. Combined investigations may lead to applications in optical data processing and storage or the realization of quantum optical memories.

746 citations

Journal ArticleDOI
TL;DR: Recent and ongoing progress in the realm of active, gain-enhanced nanoplasmonic metamaterials are reviewed and the underlying theoretical concepts of the complex interaction between plasmons and gain media are introduced.
Abstract: Metamaterials have a tremendous potential for applications from biophotonics to optical circuits, although progress has been hampered by intrinsic metal losses. This Review discusses the progress in countering such losses through the use of gain media to realize devices such as nanoplasmonic lasers or improved metamaterials for imaging and nonlinear optical applications.

539 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed discussion on the thermodynamics of solar energy conversion in IBSCs, the device physics, and the carrier dynamics processes with a particular emphasis on the two-step inter-subband absorption/recombination processes that are of paramount importance in a successful implementation high-efficiency IBSC.
Abstract: Extensive literature and publications on intermediate band solar cells (IBSCs) are reviewed. A detailed discussion is given on the thermodynamics of solar energy conversion in IBSCs, the device physics, and the carrier dynamics processes with a particular emphasis on the two-step inter-subband absorption/recombination processes that are of paramount importance in a successful implementation high-efficiency IBSC. The experimental solar cell performance is further discussed, which has been recently demonstrated by using highly mismatched alloys and high-density quantum dot arrays and superlattice. IBSCs having widely different structures, materials, and spectral responses are also covered, as is the optimization of device parameters to achieve maximum performance.

326 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: To the best of our knowledge, there is only one application of mathematical modelling to face recognition as mentioned in this paper, and it is a face recognition problem that scarcely clamoured for attention before the computer age but, having surfaced, has attracted the attention of some fine minds.
Abstract: to be done in this area. Face recognition is a problem that scarcely clamoured for attention before the computer age but, having surfaced, has involved a wide range of techniques and has attracted the attention of some fine minds (David Mumford was a Fields Medallist in 1974). This singular application of mathematical modelling to a messy applied problem of obvious utility and importance but with no unique solution is a pretty one to share with students: perhaps, returning to the source of our opening quotation, we may invert Duncan's earlier observation, 'There is an art to find the mind's construction in the face!'.

3,015 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
14 Jun 2013-Science
TL;DR: Transition metal dichalcogenides sandwiched between two layers of graphene produce an enhanced photoresponse, which allows development of extremely efficient flexible photovoltaic devices with photoresponsivity above 0.1 ampere per watt (corresponding to an external quantum efficiency of above 30%).
Abstract: The isolation of various two-dimensional (2D) materials, and the possibility to combine them in vertical stacks, has created a new paradigm in materials science: heterostructures based on 2D crystals. Such a concept has already proven fruitful for a number of electronic applications in the area of ultrathin and flexible devices. Here, we expand the range of such structures to photoactive ones by using semiconducting transition metal dichalcogenides (TMDCs)/graphene stacks. Van Hove singularities in the electronic density of states of TMDC guarantees enhanced light-matter interactions, leading to enhanced photon absorption and electron-hole creation (which are collected in transparent graphene electrodes). This allows development of extremely efficient flexible photovoltaic devices with photoresponsivity above 0.1 ampere per watt (corresponding to an external quantum efficiency of above 30%).

2,209 citations

01 Jan 2011

2,117 citations

Journal ArticleDOI
18 Sep 2008-Nature
TL;DR: Bulk optical metamaterials open up prospects for studies of 3D optical effects and applications associated with NIMs and zero-index materials such as reversed Doppler effect, superlenses, optical tunnelling devices, compact resonators and highly directional sources.
Abstract: Metamaterials are artificially engineered structures that have properties, such as a negative refractive index, not attainable with naturally occurring materials. Negative-index metamaterials (NIMs) were first demonstrated for microwave frequencies, but it has been challenging to design NIMs for optical frequencies and they have so far been limited to optically thin samples because of significant fabrication challenges and strong energy dissipation in metals. Such thin structures are analogous to a monolayer of atoms, making it difficult to assign bulk properties such as the index of refraction. Negative refraction of surface plasmons was recently demonstrated but was confined to a two-dimensional waveguide. Three-dimensional (3D) optical metamaterials have come into focus recently, including the realization of negative refraction by using layered semiconductor metamaterials and a 3D magnetic metamaterial in the infrared frequencies; however, neither of these had a negative index of refraction. Here we report a 3D optical metamaterial having negative refractive index with a very high figure of merit of 3.5 (that is, low loss). This metamaterial is made of cascaded 'fishnet' structures, with a negative index existing over a broad spectral range. Moreover, it can readily be probed from free space, making it functional for optical devices. We construct a prism made of this optical NIM to demonstrate negative refractive index at optical frequencies, resulting unambiguously from the negative phase evolution of the wave propagating inside the metamaterial. Bulk optical metamaterials open up prospects for studies of 3D optical effects and applications associated with NIMs and zero-index materials such as reversed Doppler effect, superlenses, optical tunnelling devices, compact resonators and highly directional sources.

2,025 citations