scispace - formally typeset
Search or ask a question
Author

Osama Abdeljaber

Bio: Osama Abdeljaber is an academic researcher from Linnaeus University. The author has contributed to research in topics: Structural health monitoring & Convolutional neural network. The author has an hindex of 16, co-authored 41 publications receiving 1580 citations. Previous affiliations of Osama Abdeljaber include University College of Engineering & Qatar University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a 1D convolutional neural network (CNN) was proposed to fuse feature extraction and classification blocks into a single and compact learning body for real-time structural damage detection.

735 citations

Journal ArticleDOI
TL;DR: This paper presents a comprehensive review of the general architecture and principals of 1D CNNs along with their major engineering applications, especially focused on the recent progress in this field.

659 citations

Posted Content
TL;DR: A comprehensive review of the general architecture and principals of 1D CNNs along with their major engineering applications, especially focused on the recent progress in this field, is presented in this paper, where the benchmark datasets and the principal 1D convolutional neural network software used in those applications are also publically shared in a dedicated website.
Abstract: During the last decade, Convolutional Neural Networks (CNNs) have become the de facto standard for various Computer Vision and Machine Learning operations. CNNs are feed-forward Artificial Neural Networks (ANNs) with alternating convolutional and subsampling layers. Deep 2D CNNs with many hidden layers and millions of parameters have the ability to learn complex objects and patterns providing that they can be trained on a massive size visual database with ground-truth labels. With a proper training, this unique ability makes them the primary tool for various engineering applications for 2D signals such as images and video frames. Yet, this may not be a viable option in numerous applications over 1D signals especially when the training data is scarce or application-specific. To address this issue, 1D CNNs have recently been proposed and immediately achieved the state-of-the-art performance levels in several applications such as personalized biomedical data classification and early diagnosis, structural health monitoring, anomaly detection and identification in power electronics and motor-fault detection. Another major advantage is that a real-time and low-cost hardware implementation is feasible due to the simple and compact configuration of 1D CNNs that perform only 1D convolutions (scalar multiplications and additions). This paper presents a comprehensive review of the general architecture and principals of 1D CNNs along with their major engineering applications, especially focused on the recent progress in this field. Their state-of-the-art performance is highlighted concluding with their unique properties. The benchmark datasets and the principal 1D CNN software used in those applications are also publically shared in a dedicated website.

618 citations

Journal ArticleDOI
TL;DR: This paper aims to fulfill the gap by presenting the highlights of the traditional methods and provide a comprehensive review of the most recent applications of ML and DL algorithms utilized for vibration-based structural damage detection in civil structures.

440 citations

Journal ArticleDOI
TL;DR: This paper presents an enhanced CNN-based approach that requires only two measurement sets regardless of the size of the structure and successfully estimated the actual amount of damage for the nine damage scenarios of the benchmark study.

316 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The applications of deep learning in machine health monitoring systems are reviewed mainly from the following aspects: Auto-encoder and its variants, Restricted Boltzmann Machines, Convolutional Neural Networks, and Recurrent Neural Networks.

1,569 citations

Journal ArticleDOI
TL;DR: Deep Convolutional Neural Networks (CNNs) as mentioned in this paper are a special type of Neural Networks, which has shown exemplary performance on several competitions related to Computer Vision and Image Processing.
Abstract: Deep Convolutional Neural Network (CNN) is a special type of Neural Networks, which has shown exemplary performance on several competitions related to Computer Vision and Image Processing. Some of the exciting application areas of CNN include Image Classification and Segmentation, Object Detection, Video Processing, Natural Language Processing, and Speech Recognition. The powerful learning ability of deep CNN is primarily due to the use of multiple feature extraction stages that can automatically learn representations from the data. The availability of a large amount of data and improvement in the hardware technology has accelerated the research in CNNs, and recently interesting deep CNN architectures have been reported. Several inspiring ideas to bring advancements in CNNs have been explored, such as the use of different activation and loss functions, parameter optimization, regularization, and architectural innovations. However, the significant improvement in the representational capacity of the deep CNN is achieved through architectural innovations. Notably, the ideas of exploiting spatial and channel information, depth and width of architecture, and multi-path information processing have gained substantial attention. Similarly, the idea of using a block of layers as a structural unit is also gaining popularity. This survey thus focuses on the intrinsic taxonomy present in the recently reported deep CNN architectures and, consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature-map exploitation, channel boosting, and attention. Additionally, the elementary understanding of CNN components, current challenges, and applications of CNN are also provided.

1,328 citations

Journal ArticleDOI
TL;DR: A new CNN based on LeNet-5 is proposed for fault diagnosis which can extract the features of the converted 2-D images and eliminate the effect of handcrafted features and has achieved significant improvements.
Abstract: Fault diagnosis is vital in manufacturing system, since early detections on the emerging problem can save invaluable time and cost. With the development of smart manufacturing, the data-driven fault diagnosis becomes a hot topic. However, the traditional data-driven fault diagnosis methods rely on the features extracted by experts. The feature extraction process is an exhausted work and greatly impacts the final result. Deep learning (DL) provides an effective way to extract the features of raw data automatically. Convolutional neural network (CNN) is an effective DL method. In this study, a new CNN based on LeNet-5 is proposed for fault diagnosis. Through a conversion method converting signals into two-dimensional (2-D) images, the proposed method can extract the features of the converted 2-D images and eliminate the effect of handcrafted features. The proposed method which is tested on three famous datasets, including motor bearing dataset, self-priming centrifugal pump dataset, and axial piston hydraulic pump dataset, has achieved prediction accuracy of 99.79%, 99.481%, and 100%, respectively. The results have been compared with other DL and traditional methods, including adaptive deep CNN, sparse filter, deep belief network, and support vector machine. The comparisons show that the proposed CNN-based data-driven fault diagnosis method has achieved significant improvements.

1,240 citations

Journal ArticleDOI
22 Feb 2017-Sensors
TL;DR: A novel method named Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN), which can not only achieve 100% classification accuracy on normal signals, but also outperform the state-of-the-art DNN model which is based on frequency features under different working load and noisy environment conditions.
Abstract: Intelligent fault diagnosis techniques have replaced time-consuming and unreliable human analysis, increasing the efficiency of fault diagnosis. Deep learning models can improve the accuracy of intelligent fault diagnosis with the help of their multilayer nonlinear mapping ability. This paper proposes a novel method named Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN). The proposed method uses raw vibration signals as input (data augmentation is used to generate more inputs), and uses the wide kernels in the first convolutional layer for extracting features and suppressing high frequency noise. Small convolutional kernels in the preceding layers are used for multilayer nonlinear mapping. AdaBN is implemented to improve the domain adaptation ability of the model. The proposed model addresses the problem that currently, the accuracy of CNN applied to fault diagnosis is not very high. WDCNN can not only achieve 100% classification accuracy on normal signals, but also outperform the state-of-the-art DNN model which is based on frequency features under different working load and noisy environment conditions.

876 citations

Journal ArticleDOI
TL;DR: An end-to-end method that takes raw temporal signals as inputs and thus doesn’t need any time consuming denoising preprocessing and can achieve high accuracy when working load is changed is proposed.

805 citations