scispace - formally typeset
Search or ask a question
Author

Osama M. Mukdadi

Bio: Osama M. Mukdadi is an academic researcher from West Virginia University. The author has contributed to research in topics: Ultrasonic sensor & Dispersion (water waves). The author has an hindex of 14, co-authored 58 publications receiving 690 citations. Previous affiliations of Osama M. Mukdadi include Khalifa University & Office of Technology Transfer.


Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that a two-frequency excitation may be sufficient to induce nonlinear behavior of the microbubbles at modest incident pressures, and provide support for the use of multifrequency driving to enhance echo PIV applications.
Abstract: Accurate measurement of velocity profiles, multiple velocity vectors and local shear stress in arteries is very important for a variety of cardiovascular diseases. We have recently developed an ultrasound based velocimetry technique, termed echo particle image velocimetry (echo PIV). This method takes advantage of the nonlinear backscatter characteristics of ultrasound contrast microbubbles when exposed to certain ultrasonic forcing conditions. Preliminary in vitro, animal and clinical studies have shown significant promise of this method for measuring multiple velocity components with good temporal (up to 2 ms) and spatial (<1 mm) resolution. However, there is still difficulty in maximizing the nonlinearity of bubble backscatter using conventional Gaussian-pulse excitation techniques because: (1) significant harmonic components may not be produced at modest pressure amplitudes; and (2) the higher incident pressure amplitudes required to induce nonlinear behavior may cause bubble destruction. We present here a potential solution to this problem through the use of multifrequency excitation, where rectangular and triangular pulses with four harmonics are used to drive the bubble. The nonlinear behavior of the microbubble, as well as fragility and backscatter, were studied through numerical modeling via a modified Rayleigh-Plesset equation. Results show that the rectangular wave is effective in improving the visibility of microbubbles, with effective scattering cross-section area significantly higher (up to 35 times) than the widely-used Gaussian waveform. However, velocity and acceleration analysis of the bubble wall shows that the rectangular wave may threaten bubble stability. Due to lower wall velocity and acceleration, the triangular wave should decrease the potential for bubble destruction yet maintain relatively high second harmonic backscatter components. The impact of higher harmonics was studied by examining backscatter differences from incident rectangular and triangular pulses with four and two harmonics. Results indicate that a two-frequency excitation (which may be easier to implement practically) may be sufficient to induce nonlinear behavior of the microbubbles at modest incident pressures. These predictions provide support for the use of multifrequency driving to enhance echo PIV applications.

37 citations

Journal ArticleDOI
TL;DR: Results show a significant advantage in using the second harmonic component for echo PIV, especially for small bubble sizes less than 3 microm in diameter at 2.2 MHz frequency, and theoretical predictions provide further understanding of the physics behind the technique.

35 citations

Journal ArticleDOI
TL;DR: The results indicate the great potential of utilizing high-resolution ultrasound as a noninvasive, nonionizing imaging technique for the early diagnosis of the more severe form of periodontal disease.
Abstract: Although medical specialties have recognized the importance of using ultrasonic imaging, dentistry is only beginning to discover its benefit. This has particularly been important in the field of periodontics which studies infections in the gum and bone tissues that surround the teeth. This study investigates the feasibility of using a custom-designed high-frequency ultrasound imaging system to reconstruct high-resolution (<50 μm) three-dimensional (3D) surface images of periodontal defects in human jawbone. The system employs single-element focused ultrasound transducers with center frequencies ranging from 30 to 60 MHz. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high-precision two-dimensional (2D) positioning system of ±1 μm resolution for acquiring accurate measurements of the mandible, in vitro. Signal and image processing algorithms are applied to reconstruct high-resolution ultrasound images and extract the jawbone surface in each frame. Then, all edges are combined and smoothed in order to render a 3D surface image of the jawbone. In vitro experiments were performed to assess the system performance using mandibles with teeth (dentate) or without (nondentate). The system was able to reconstruct 3D images for the mandible’s outer surface with superior spatial resolution down to 24 μm, and to perform the whole scanning in <30 s. Major anatomical landmarks on the images were confirmed with the anatomical structures on the mandibles. All the anatomical landmarks were detected and fully described as 3D images using this novel ultrasound imaging technique, whereas the 2D X-ray radiographic images suffered from poor contrast. These results indicate the great potential of utilizing high-resolution ultrasound as a noninvasive, nonionizing imaging technique for the early diagnosis of the more severe form of periodontal disease.

34 citations

Journal ArticleDOI
TL;DR: The 3D finite-element analysis provides an effective pre-operative method for planning patient-specific TKA prostheses, and for designing future models that preserves the biomechanical function of the Femur-TKA-Tibia system.

28 citations

Journal ArticleDOI
TL;DR: In this paper, a semi-analytical finite element method (SAFEM) is adopted for the analysis of ultrasonic signals generated in an anisotropic infinite plate by a pulsed laser beam, where the plate is divided into parallel layers through its thickness and the displacement and temperature in each layer are approximated by quadratic polynomials in the thickness direction.
Abstract: In recent years, the study of thermoelastic waves generated by focused laser beams has been undertaken by several researchers because the technique provides a means for noncontact generation of ultrasonic waves. Laser-generated ultrasonic waves have diverse applications ranging from material characterization to nondestructive testing of defects. Transient ultrasonic guided waves generated in an anisotropic infinite plate by a pulsed laser beam are investigated in this study. A semi-analytical finite element method (SAFEM) is adopted for this purpose. In this method, the plate is divided into parallel layers through its thickness and the displacement and temperature in each layer are approximated by quadratic polynomials in the thickness direction (z). They are assumed to be continuous functions of time and in-plane cartesian coordinates (x, y). Transient response is calculated using Fourier transformations in time and space variables (x, y). The analysis technique is applicable to a generally ani...

27 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results of the analyses suggest that disease progression to distant sites does not occur exclusively via the axillary lymph nodes, but rather that lymph node status serves as an indicator of the tumor's ability to spread.
Abstract: Two of the most important prognostic indicators for breast cancer are tumor size and extent of axillary lymph node involvement. Data on 24,740 cases recorded in the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute were used to evaluate the breast cancer survival experience in a representative sample of women from the United States. Actuarial (life table) methods were used to investigate the 5-year relative survival rates in cases with known operative/pathologic axillary lymph node status and primary tumor diameter. Survival rates varied from 45.5% for tumor diameters equal to or greater than 5 cm with positive axillary nodes to 96.3% for tumors less than 2 cm and with no involved nodes. The relation between tumor size and lymph node status was investigated in detail. Tumor diameter and lymph node status were found to act as independent but additive prognostic indicators. As tumor size increased, survival decreased regardless of lymph node status; and as lymph node involvement increased, survival status also decreased regardless of tumor size. A linear relation was found between tumor diameter and the percent of cases with positive lymph node involvement. The results of our analyses suggest that disease progression to distant sites does not occur exclusively via the axillary lymph nodes, but rather that lymph node status serves as an indicator of the tumor's ability to spread.

960 citations

Journal ArticleDOI
B.B. Bauer1
01 Apr 1963

897 citations

Proceedings ArticleDOI
TL;DR: In this article, a semi-analytical finite element (SAFE) method for modeling wave propagation in waveguides of arbitrary cross-section is proposed, and the dispersive solutions are obtained in terms of phase velocity, group velocity, energy velocity, attenuation and cross-sectional mode shapes.

534 citations

Journal ArticleDOI
TL;DR: This manuscript reviews the development and application of nanoparticles and their future potential to advance current and emerging clinical bioimaging techniques, with a focus on solid, phase-separated materials, for example metals and metal oxides.
Abstract: Nanoparticle-based contrast agents are quickly becoming valuable and potentially transformative tools for enhancing medical diagnostics for a wide range of in-vivo imaging modalities. Compared with conventional molecular-scale contrast agents, nanoparticles (NPs) promise improved abilities for in-vivo detection and potentially enhanced targeting efficiencies through longer engineered circulation times, designed clearance pathways, and multimeric binding capacities. However, NP contrast agents are not without issues. Difficulties in minimizing batch-to-batch variations and problems with identifying and characterizing key physicochemical properties that define the in-vivo fate and transport of NPs are significant barriers to the introduction of new NP materials as clinical contrast agents. This manuscript reviews the development and application of nanoparticles and their future potential to advance current and emerging clinical bioimaging techniques. A focus is placed on the application of solid, phase-separated materials, for example metals and metal oxides, and their specific application as contrast agents for in-vivo near-infrared fluorescence (NIRF) imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound (US), and photoacoustic imaging (PAI). Clinical and preclinical applications of NPs are identified for a broad spectrum of imaging applications, with commentaries on the future promise of these materials. Emerging technologies, for example multifunctional and theranostic NPs, and their potential for clinical advances are also discussed.

441 citations