scispace - formally typeset
Search or ask a question
Author

Osamu Kitagawa

Bio: Osamu Kitagawa is an academic researcher from Shibaura Institute of Technology. The author has contributed to research in topics: Enantioselective synthesis & Allylic rearrangement. The author has an hindex of 30, co-authored 166 publications receiving 2762 citations. Previous affiliations of Osamu Kitagawa include Tokyo University of Pharmacy and Life Sciences & University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: The literature data discussed in this review clearly suggest that SDE via achiral chromatography might be expected for any given chiral enantiomerically enriched compound, and can be used as a new, nonconventional method for optical purifications.
Abstract: This tutorial review describes the self-disproportionation of enantiomers (SDE) of chiral, non-racemic compounds, subjected to chromatography on an achiral stationary phase using an achiral eluent, which leads to the substantial enantiomeric enrichment and the corresponding depletion in different fractions, as compared to the enantiomeric composition of the starting material. The physicochemical background of SDE is a dynamic formation of homo- or heterochiral dimeric or oligomeric aggregates of different chromatographic behavior. This phenomenon is of a very general nature as the SDE has been reported for different classes of organic compounds bearing various functional groups and possessing diverse elements of chirality (central, axial and helical chirality). The literature data discussed in this review clearly suggest that SDE via achiral chromatography might be expected for any given chiral enantiomerically enriched compound. This presents two very important issues for organic chemists. First, chromatographic purification of reaction products can lead to erroneous determination of the stereochemical outcome of catalytic asymmetric reactions and second, achiral chromatography can be used as a new, nonconventional method for optical purifications. The latter has tremendous practical potential as the currently available techniques are limited to crystallization or chiral chromatography. However, a further systematic study of SDE is needed to develop understanding of this phenomenon and to design practical chromatographic separation techniques for optical purification of non-racemic mixtures by achiral-phase chromatography.

136 citations

Journal ArticleDOI
TL;DR: In the presence of (R)-DTBM-SEGPHOS-Pd(OAc)(2) catalyst, N-arylation of various o-tert-butylanilides with p-iodonitrobenzene proceeds with high enantioselectivity to give atropisomeric N-(p-nitrophenyl)anilides having an N-C chiral axis in good yields.
Abstract: In the presence of (R)-DTBM-SEGPHOS−Pd(OAc)2 catalyst, N-arylation (aromatic amination) of various o-tert-butylanilides with p-iodonitrobenzene proceeds with high enantioselectivity (88−96% ee) to give atropisomeric N-(p-nitrophenyl)anilides having an N−C chiral axis in good yields. Atropisomeric anilide products highly prefer to exist as the E-rotamer which has trans-disposed o-tert-butylphenyl group and carbonyl oxygen. The application of the present catalytic enantioselective N-arylation to an intramolecular version gives atropisomeric lactam derivatives with high optical purity (92−98% ee). The reaction of the lithium enolate prepared from the atropisomeric anilide and lactam products with various alkyl halides gives α-alkylated products with high diastereoselectivity (diastereomer ratio = 13:1 to 46:1).

113 citations

Journal ArticleDOI
TL;DR: Generation of the reformatsky reagent of difluoracetate from the iodide and the diffluoroketene silyl acetal and their aldol reaction are described in this article.

106 citations

Journal ArticleDOI
TL;DR: In this article, the formation of CC bond through reactions of iododifluoroacetate-copper with various organic halides in aprotic solvent proceeds effectively to give 2,2-difluoroesters in good yield.

104 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Introduced to the Market in the Last Decade (2001−2011) Jiang Wang,† María Sańchez-Rosello,́‡,§ Jose ́ Luis Aceña, Carlos del Pozo,‡ and Hong Liu.
Abstract: Introduced to the Market in the Last Decade (2001−2011) Jiang Wang,† María Sańchez-Rosello,́‡,§ Jose ́ Luis Aceña, Carlos del Pozo,‡ Alexander E. Sorochinsky, Santos Fustero,*,‡,§ Vadim A. Soloshonok,* and Hong Liu*,† †Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China ‡Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andreś Estelleś, 46100 Burjassot, Valencia, Spain Laboratorio de Molećulas Orgańicas, Centro de Investigacioń Príncipe Felipe, C/ Eduardo Primo Yuf́era 3, 46012 Valencia, Spain Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizab́al 3, 20018 San Sebastian, Spain IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyiv-94, Ukraine

3,368 citations

Journal ArticleDOI
TL;DR: Compounds Currently in Phase II−III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas is presented.
Abstract: Compounds Currently in Phase II−III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas Yu Zhou,† Jiang Wang,† Zhanni Gu,† Shuni Wang,† Wei Zhu,† Jose ́ Luis Aceña,*,‡,§ Vadim A. Soloshonok,*,‡,∥ Kunisuke Izawa,* and Hong Liu*,† †Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China ‡Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizab́al 3, 20018 San Sebastiań, Spain Department of Organic Chemistry, Autońoma University of Madrid, Cantoblanco, 28049 Madrid, Spain IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, Japan 533-0024

1,740 citations

Journal ArticleDOI
TL;DR: The proposed involvement of cyclopropyl metal carbenes of type 4 in the electrophilic activation of enynes by transition metals was first substantiated in reactions catalyzed by Pd(II), in which the initially formed cycloprostyl palladiumCarbenes undergo [4 + 2] cycloaddition with the double bond of the conjugate enyne.
Abstract: Gold salts and complexes have emerged in the past few years as the most powerful catalysts for electrophilic activation of alkynes toward a variety of nucleophiles under homogeneous conditions. In a simplified form, nucleophilic attack on the [AuL]-activated alkyne proceeds via π complexes 1 to give trans-alkenyl gold complexes of type 2 as intermediates (Scheme 1). This type of coordination is also a common theme in gold-catalyzed cycloisomerizations of enynes, in which the alkene function acts as the nucleophile. In the reaction of enynes with complexes of other transition metals, an Alder-ene cycloisomerization can take place by simultaneous coordination of the alkyne and the alkene to the metal followed by an oxidative cyclometalation. In contrast, this process does not occur for gold(I) since oxidative addition processes are not facile for this metal. 6 In addition, the [AuL] fragment, which is isolobal to H and HgL, adopts a linear coordination and binds to either the alkene or the alkyne. Thus, cycloisomerizations of enynes catalyzed by gold proceed by an initial coordination of the metal to the alkyne, and as illustrated in Scheme 2, the resulting complex 3 reacts with the alkene by either the 5-exo-dig or 6-endo-dig pathway to form the exoor endocyclopropyl gold carbene 4 or 5, respectively, as has been established with other electrophilic transition-metal complexes or halides MXn as catalysts. The proposed involvement of cyclopropyl metal carbenes of type 4 in the electrophilic activation of enynes by transition metals was first substantiated in reactions catalyzed by Pd(II), in which the initially formed cyclopropyl palladium carbenes undergo [4 + 2] cycloaddition with the double bond of the conjugate enyne. Strong evidence for the existence of cyclopropyl metal carbenes as intermediates was also obtained in the reaction of enynes bearing additional double bonds at the alkenyl chain with Ru(II) and Pt(II) catalysts. In these reactions, the cyclopropyl metal carbenes are trapped intramolecularly by the terminal alkene to give tetracycles containing two cyclopropanes. Gold(I) complexes usually surpass the reactivity shown by Pt(II) and other electrophilic metal salts and complexes for the activation of enynes. They are highly reactive yet uniquely selective Lewis acids that have a high affinity for π bonds. This high π-acidity is linked to relativistic effects, which reach a maximum in the periodic table with gold. However, on occasion, the stronger Lewis acidity of gold complexes can be detrimental in terms of selectivity and because of their low tolerance to certain functional groups. In these instances, the less-strongly Lewis acidic Pt(II) complexes could be the catalysts of choice. * To whom correspondence should be addressed. E-mail: aechavarren@ iciq.es. † Additional affiliation: Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. Scheme 1 Chem. Rev. 2008, 108, 3326–3350 3326

1,728 citations

Journal ArticleDOI
TL;DR: Hydroamination of Alkenes and Alkynes under Microwave Irradiation and Nitromercuration Reactions 3878 9.8.4.5.
Abstract: 8.4.5. Nitromercuration Reactions 3878 9. Hydroamination of Alkenes and Alkynes under Microwave Irradiation 3878 * To whom correspondence should be addressed. Phone: +49 241 8

1,685 citations

Journal ArticleDOI
TL;DR: This review will focus mainly on the new methods that have appeared in the literature since 1989 for stereoselective cyclopropanation reactions from olefins: the halomethylmetal-mediated cycloalkane reactions, the transition metal-catalyzed decomposition of diazo compounds, and the nucleophilic addition-ring closure sequence.
Abstract: Organic chemists have always been fascinated by the cyclopropane subunit.1 The smallest cycloalkane is found as a basic structural element in a wide range of naturally occurring compounds.2 Moreover, many cyclopropane-containing unnatural products have been prepared to test the bonding features of this class of highly strained cycloalkanes3 and to study enzyme mechanism or inhibition.4 Cyclopropanes have also been used as versatile synthetic intermediates in the synthesis of more functionalized cycloalkanes5,6 and acyclic compounds.7 In recent years, most of the synthetic efforts have focused on the enantioselective synthesis of cyclopropanes.8 This has remained a challenge ever since it was found that the members of the pyrethroid class of compounds were effective insecticides.9 New and more efficient methods for the preparation of these entities in enantiomerically pure form are still evolving, and this review will focus mainly on the new methods that have appeared in the literature since 1989. It will elaborate on only three types of stereoselective cyclopropanation reactions from olefins: the halomethylmetal-mediated cyclopropanation reactions (eq 1), the transition metal-catalyzed decomposition of diazo compounds (eq 2), and the nucleophilic addition-ring closure sequence (eqs 3 and 4). These three processes will be examined in the context of diastereoand enantiocontrol. In the last section of the review, other methods commonly used to make chiral, nonracemic cyclopropanes will be briefly outlined.

1,426 citations