scispace - formally typeset
Search or ask a question
Author

Oscar Puig

Bio: Oscar Puig is an academic researcher from Hoffmann-La Roche. The author has contributed to research in topics: Population & Familial hypercholesterolemia. The author has an hindex of 29, co-authored 66 publications receiving 6055 citations. Previous affiliations of Oscar Puig include Bristol-Myers Squibb & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
01 Jul 2001-Methods
TL;DR: The TAP method is developed as a tool that allows rapid purification under native conditions of complexes, even when expressed at their natural level, and is a very useful procedure for protein purification and proteome exploration.

1,906 citations

Journal ArticleDOI
TL;DR: The identification and functional characterization of the Drosophila forkhead-related transcription factor d FOXO is reported, establishing dFOXO as a key transcriptional regulator of the insulin pathway that modulates growth and proliferation.
Abstract: The Drosophila insulin receptor (dInR) regulates cell growth and proliferation through the dPI3K/dAkt pathway, which is conserved in metazoan organisms. Here we report the identification and functional characterization of the Drosophila forkhead-related transcription factor dFOXO, a key component of the insulin signaling cascade. dFOXO is phosphorylated by dAkt upon insulin treatment, leading to cytoplasmic retention and inhibition of its transcriptional activity. Mutant dFOXO lacking dAkt phosphorylation sites no longer responds to insulin inhibition, remains in the nucleus, and is constitutively active. dFOXO activation in S2 cells induces growth arrest and activates two key players of the dInR/dPI3K/dAkt pathway: the translational regulator d4EBP and the dInR itself. Induction of d4EBP likely leads to growth inhibition by dFOXO, whereas activation of dInR provides a novel transcriptionally induced feedback control mechanism. Targeted expression of dFOXO in fly tissues regulates organ size by specifying cell number with no effect on cell size. Our results establish dFOXO as a key transcriptional regulator of the insulin pathway that modulates growth and proliferation.

594 citations

Journal ArticleDOI
TL;DR: Alectinib showed clinical activity and was well tolerated in patients with ALK-positive NSCLC who had progressed on crizotinib and could be a suitable treatment for patients with AlK- positive disease who have progressed oncrizotin ib.
Abstract: Summary Background Alectinib—a highly selective, CNS-active, ALK inhibitor—showed promising clinical activity in crizotinib-naive and crizotinib-resistant patients with ALK -rearranged ( ALK -positive) non-small-cell lung cancer (NSCLC). We aimed to assess the safety and efficacy of alectinib in patients with ALK -positive NSCLC who progressed on previous crizotinib. Methods We did a phase 2 study at 27 centres in the USA and Canada. We enrolled patients aged 18 years or older with stage IIIB–IV, ALK -positive NSCLC who had progressed after crizotinib. Patients were treated with oral alectinib 600 mg twice daily until progression, death, or withdrawal. The primary endpoint was the proportion of patients achieving an objective response by an independent review committee using Response Evaluation Criteria in Solid Tumors, version 1.1. Response endpoints were assessed in the response-evaluable population (ie, patients with measurable disease at baseline who received at least one dose of study drug), and efficacy and safety analyses were done in the intention-to-treat population (all enrolled patients). This study is registered with ClinicalTrials.gov, number NCT01871805. The study is ongoing and patients are still receiving treatment. Findings Between Sept 4, 2013, and Aug 4, 2014, 87 patients were enrolled into the study (intention-to-treat population). At the time of the primary analysis (median follow-up 4·8 months [IQR 3·3–7·1]), 33 of 69 patients with measurable disease at baseline had a confirmed partial response; thus, the proportion of patients achieving an objective response by the independent review committee was 48% (95% CI 36–60). Adverse events were predominantly grade 1 or 2, most commonly constipation (31 [36%]), fatigue (29 [33%]), myalgia 21 [24%]), and peripheral oedema 20 [23%]). The most common grade 3 and 4 adverse events were changes in laboratory values, including increased blood creatine phosphokinase (seven [8%]), increased alanine aminotransferase (five [6%]), and increased aspartate aminotransferase (four [5%]). Two patients died: one had a haemorrhage (judged related to study treatment), and one had disease progression and a history of stroke (judged unrelated to treatment). Interpretation Alectinib showed clinical activity and was well tolerated in patients with ALK -positive NSCLC who had progressed on crizotinib. Therefore, alectinib could be a suitable treatment for patients with ALK -positive disease who have progressed on crizotinib. Funding F Hoffmann-La Roche.

526 citations

Journal ArticleDOI
TL;DR: The data show that multiple changes in gene expression characterize simple steatosis, and genes involved in hepatic glucose and lipid metabolism, insulin signaling, inflammation, coagulation, and cell adhesion are found to be significantly associated with liver fat content.
Abstract: Despite the high prevalence of nonalcoholic fatty liver disease (NAFLD), little is known of its pathogenesis based on study of human liver samples. By the use of Affymetrix GeneChips (17,601 genes)...

359 citations

Journal ArticleDOI
TL;DR: It is shown that, both in Drosophila and mammals, insulin receptor (InR) represses its own synthesis by a feedback mechanism directed by the transcription factor dFOXO/FOXO1, which acts as an insulin sensor to activate insulin signaling.
Abstract: The insulin signaling pathway, which is conserved in evolution from flies to humans, evolved to allow a fast response to changes in nutrient availability while keeping glucose concentration constant in serum. Here we show that, both in Drosophila and mammals, insulin receptor (InR) represses its own synthesis by a feedback mechanism directed by the transcription factor dFOXO/FOXO1. In Drosophila, dFOXO is responsible for activating transcription of dInR, and nutritional conditions can modulate this effect. Starvation up-regulates mRNA of dInR in wild-type but not dFOXO-deficient flies. Importantly, FOXO1 acts in mammalian cells like its Drosophila counterpart, up-regulating the InR mRNA level upon fasting. Mammalian cells up-regulate the InR mRNA in the absence of serum, conditions that induce the dephosphorylation and activation of FOXO1. Interestingly, insulin is able to reverse this effect. Therefore, dFOXO/FOXO1 acts as an insulin sensor to activate insulin signaling, allowing a fast response to the hormone after each meal. Our results reveal a key feedback control mechanism for dFOXO/FOXO1 in regulating metabolism and insulin signaling.

343 citations


Cited by
More filters
Journal ArticleDOI
10 Jan 2002-Nature
TL;DR: The analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions, which contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.
Abstract: Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.

4,895 citations

Journal ArticleDOI
TL;DR: How cytokines and pathogen signals influence macrophages' functional phenotypes and the evidence for M1 and M2 functions is assessed and a paradigm initially based on the role of a restricted set of selected ligands in the immune response is revisited.
Abstract: Macrophages are endowed with a variety of receptors for lineage-determining growth factors, T helper (Th) cell cytokines, and B cell, host, and microbial products. In tissues, macrophages mature and are activated in a dynamic response to combinations of these stimuli to acquire specialized functional phenotypes. As for the lymphocyte system, a dichotomy has been proposed for macrophage activation: classic vs. alternative, also M1 and M2, respectively. In view of recent research about macrophage functions and the increasing number of immune-relevant ligands, a revision of the model is needed. Here, we assess how cytokines and pathogen signals influence their functional phenotypes and the evidence for M1 and M2 functions and revisit a paradigm initially based on the role of a restricted set of selected ligands in the immune response.

3,674 citations

Journal ArticleDOI
TL;DR: A generic procedure to purify proteins expressed at their natural level under native conditions using a novel tandem affinity purification (TAP) tag and Combined with mass spectrometry, the TAP strategy allows for the identification of proteins interacting with a given target protein.
Abstract: We have developed a generic procedure to purify proteins expressed at their natural level under native conditions using a novel tandem affinity purification (TAP) tag The TAP tag allows the rapid purification of complexes from a relatively small number of cells without prior knowledge of the complex composition, activity, or function Combined with mass spectrometry, the TAP strategy allows for the identification of proteins interacting with a given target protein The TAP method has been tested in yeast but should be applicable to other cells or organisms

2,866 citations

Journal ArticleDOI
30 Apr 2004-Cell
TL;DR: It is shown that in cultured myotubes undergoing atrophy, the activity of the PI3K/AKT pathway decreases, leading to activation of Foxo transcription factors and atrogin-1 induction.

2,657 citations

Journal ArticleDOI
30 Mar 2006-Nature
TL;DR: This study reports the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry and provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.
Abstract: Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes, of which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a diversification of potential functions. Support for this modular organization of the proteome comes from integration with available data on expression, localization, function, evolutionary conservation, protein structure and binary interactions. This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.

2,640 citations