scispace - formally typeset
Search or ask a question
Author

Oscar Roberto López-Bonilla

Bio: Oscar Roberto López-Bonilla is an academic researcher from Autonomous University of Baja California. The author has contributed to research in topics: Encryption & Computer science. The author has an hindex of 6, co-authored 11 publications receiving 172 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A process to improve the randomness of five chaotic maps that are implemented on a PIC-microcontroller is introduced and it is experimentally verified that this chaotic encryption scheme can be used in practical applications such as M2M and Internet of things (IoT).
Abstract: Recently, a lot of research has been done in chaotic cryptography field using different kinds of chaotic systems, like chaotic maps, which are being considered as one of the secure and efficient methods to protect confidential information. This article highlights that the main cryptography requirements demand that the new embedded cryptosystems have to be more efficient and secure, it means that they must be faster and offer greater security. For instance, the new cryptosystems require to be compatible with the new telecommunication protocols and, in addition, to be efficient in energy consumption. In this manner, this article introduces a process to improve the randomness of five chaotic maps that are implemented on a PIC-microcontroller. The improved chaotic maps are tested to encrypt digital images in a wireless communication scheme, particularly on a machine-to-machine (M2M) link, via ZigBee channels. We show that function mod 255 improves the randomness of the pseudo-random number generators (PRNG), which is verified performing NIST SP 800-22 statistical tests, histograms, phase-plane analysis, entropy, correlation of adjacent pixels, differential attacks, and using digital images of size 256 × 256 and 512 × 512 pixels. A comparative analysis is presented versus related works that also use chaotic encryption and classic algorithms, such as: AES, DES, 3DES and IDEA. The security analysis confirms that the proposed process to improve the randomness of chaotic maps, is appropriate to implement an encryption scheme that is secure and robust against several known attacks and other statistical tests. Finally, it was experimentally verified that this chaotic encryption scheme can be used in practical applications such as M2M and Internet of things (IoT).

90 citations

Journal ArticleDOI
TL;DR: The security analysis confirms that the proposed chaotic cryptos system is secure and robust against several known attacks, as well as statistical tests of NIST and TestU01, proving that high-precision arithmetic helps to enhance the security of the cryptosystems.
Abstract: This paper proposes a new chaotic cryptosystem for the encryption of very high-resolution digital images based on the design of a digital chaos generator by using arbitrary precision arithmetic. This can be taken as an alternative to reduce the dynamic degradation that chaotic models present when they are implemented in digital devices and to increase the security of the cryptosystems. The obtained results show that when using high-precision arithmetic, the generated sequences provide good randomness and security during a greater number of iterations of the implemented chaotic maps in comparison with the generated sequences by using the standard of simple precision or double precision according to the IEEE 754 standard for floating-point arithmetic. The proposed method does not require high-cost hardware for increasing the numerical accuracy and security. As an advantage versus other recent works, using high precision, in relation to the methods that use simple precision or double precision, it awards an exponential increase in the key space. In this manner, it is demonstrated that using multiple-precision arithmetic, a key space of $$2^{33,268}$$ or higher can be obtained, depending on the level of high precision configured. The security analysis confirms that the proposed chaotic cryptosystem is secure and robust against several known attacks, as well as statistical tests of NIST and TestU01, proving that high-precision arithmetic helps to enhance the security of the cryptosystems.

58 citations

Journal ArticleDOI
TL;DR: A security analysis is provided to demonstrate that the proposed cryptosystem is highly secure and robust against known attacks.
Abstract: A new embedded chaotic cryptosystem is introduced herein with the aim to encrypt digital images and performing speech recognition as an external access key. The proposed cryptosystem consists of three technologies: (i) a Spartan 3E-1600 FPGA from Xilinx; (ii) a 64-bit Raspberry Pi 3 single board computer; and (iii) a voice recognition chip manufactured by Sunplus. The cryptosystem operates with four embedded algorithms: (1) a graphical user interface developed in Python language for the Raspberry Pi platform, which allows friendly management of the system; (2) an internal control entity that entails the start-up of the embedded system based on the identification of the key access, the pixels-entry of the image to the FPGA to be encrypted or unraveled from the Raspberry Pi, and the self-execution of the encryption/decryption of the information; (3) a chaotic pseudo-random binary generator whose decimal numerical values are converted to an 8-bit binary scale under the VHDL description of m o d ( 255 ) ; and (4) two UART communication algorithms by using the RS-232 protocol, all of them described in VHDL for the FPGA implementation. We provide a security analysis to demonstrate that the proposed cryptosystem is highly secure and robust against known attacks.

43 citations

Journal ArticleDOI
TL;DR: The main contributions are the theoretical and experimental study to determine the aquarium background color and the algorithm of the proposed method implemented in a low cost and high performance embedded system, thus, allowing the counting instrument to be reliable, portable and easily migratory to different operating systems.

35 citations

Journal ArticleDOI
06 Dec 2019-Sensors
TL;DR: The proposed ROV can reach up to 100 m underwater, thus solving the issue of divers who can only reach 30 m depth, and can be useful in underwater applications such as surveillance, operations, maintenance, and measurement.
Abstract: The design of a remotely operated vehicle (ROV) with a size of 18.41 cm × 29.50 cm × 33.50 cm, and a weight of 15.64 kg, is introduced herein. The main goal is to capture underwater video by remote control communication in real time via Ethernet protocol. The ROV moves under the six brushless motors governed through a smart PID controller (Proportional + Integral + Derivative) and by using pulse-wide modulation with short pulses of 1 μs to improve the stability of the position in relation to the translational, ascent or descent, and rotational movements on three axes to capture images of 800 × 640 pixels on a video graphic array standard. The motion control, 3D position, temperature sensing, and video capture are performed at the same time, exploiting the four cores of the Raspberry Pi 3, using the threading library for parallel computing. In such a way, experimental results show that the video capture stage can process up to 42 frames per second on a Raspberry Pi 3. The remote control of the ROV is executed under a graphical user interface developed in Python, which is suitable for different operating systems, such as GNU/Linux, Windows, Android, and OS X. The proposed ROV can reach up to 100 m underwater, thus solving the issue of divers who can only reach 30 m depth. In addition, the proposed ROV can be useful in underwater applications such as surveillance, operations, maintenance, and measurement.

32 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Corvus corone module two-way image transmission is proposed that provides energy efficiency along CS model, secured transmission through a matrix of security under CS such as inbuilt method, which was named as compressed secured matrix and faultless reconstruction along that of eminent random matrix counting under CS.
Abstract: The manufacturing of intelligent and secure visual data transmission over the wireless sensor network is key requirement nowadays to many applications. The two-way transmission of image under a wireless channel needed image must compatible along channel characteristics such as band width, energy-efficient, time consumption and security because the image adopts big space under the device of storage and need a long time that easily undergoes cipher attacks. Moreover, Quizzical the problem for the additional time under compression results that, the secondary process of the compression followed through the acquisition consumes more time.,Hence, for resolving these issues, compressive sensing (CS) has emerged, which compressed the image at the time of sensing emerges as a speedy manner that reduces the time consumption and saves bandwidth utilization but fails under secured transmission. Several kinds of research paved path to resolve the security problems under CS through providing security such as the secondary process.,Thus, concerning the above issues, this paper proposed the Corvus corone module two-way image transmission that provides energy efficiency along CS model, secured transmission through a matrix of security under CS such as inbuilt method, which was named as compressed secured matrix and faultless reconstruction along that of eminent random matrix counting under CS.,Experimental outputs shows intelligent module gives energy efficient, secured transmission along lower computational timing also decreased bit error rate.

252 citations

Journal ArticleDOI
TL;DR: A process to improve the randomness of five chaotic maps that are implemented on a PIC-microcontroller is introduced and it is experimentally verified that this chaotic encryption scheme can be used in practical applications such as M2M and Internet of things (IoT).
Abstract: Recently, a lot of research has been done in chaotic cryptography field using different kinds of chaotic systems, like chaotic maps, which are being considered as one of the secure and efficient methods to protect confidential information. This article highlights that the main cryptography requirements demand that the new embedded cryptosystems have to be more efficient and secure, it means that they must be faster and offer greater security. For instance, the new cryptosystems require to be compatible with the new telecommunication protocols and, in addition, to be efficient in energy consumption. In this manner, this article introduces a process to improve the randomness of five chaotic maps that are implemented on a PIC-microcontroller. The improved chaotic maps are tested to encrypt digital images in a wireless communication scheme, particularly on a machine-to-machine (M2M) link, via ZigBee channels. We show that function mod 255 improves the randomness of the pseudo-random number generators (PRNG), which is verified performing NIST SP 800-22 statistical tests, histograms, phase-plane analysis, entropy, correlation of adjacent pixels, differential attacks, and using digital images of size 256 × 256 and 512 × 512 pixels. A comparative analysis is presented versus related works that also use chaotic encryption and classic algorithms, such as: AES, DES, 3DES and IDEA. The security analysis confirms that the proposed process to improve the randomness of chaotic maps, is appropriate to implement an encryption scheme that is secure and robust against several known attacks and other statistical tests. Finally, it was experimentally verified that this chaotic encryption scheme can be used in practical applications such as M2M and Internet of things (IoT).

90 citations

Journal ArticleDOI
TL;DR: The results of performance tests show that S-boxes with good cryptographic properties can be generated on the basis of this discrete-space chaotic map, and its S-box design method is presented as an example of its application in cryptography.
Abstract: In this paper, a new one-dimensional discrete-space chaotic map based on the multiplication of integer numbers and circular shift is presented. Dynamical properties of the proposed map are analyzed, and it exhibits chaotic behavior. The proposed map has fixed points for certain settings, but it is easy to completely avoid them. This map preserves all desirable properties of previous discrete-space chaotic maps and has improved characteristics related to orbit length, computational complexity and memory requirements. These improvements can be particularly useful when implementation in digital devices, which have limited memory and computational resources, is needed. S-box design method based on this chaotic map is presented as an example of its application in cryptography. The results of performance tests show that S-boxes with good cryptographic properties can be generated on the basis of this discrete-space chaotic map.

89 citations