scispace - formally typeset
Search or ask a question
Author

오승준

Bio: 오승준 is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 449 citations.

Papers
More filters
01 Dec 1996

452 citations


Cited by
More filters
Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Journal ArticleDOI
TL;DR: The goal of this article is to introduce the concept of SR algorithms to readers who are unfamiliar with this area and to provide a review for experts to present the technical review of various existing SR methodologies which are often employed.
Abstract: A new approach toward increasing spatial resolution is required to overcome the limitations of the sensors and optics manufacturing technology. One promising approach is to use signal processing techniques to obtain an high-resolution (HR) image (or sequence) from observed multiple low-resolution (LR) images. Such a resolution enhancement approach has been one of the most active research areas, and it is called super resolution (SR) (or HR) image reconstruction or simply resolution enhancement. In this article, we use the term "SR image reconstruction" to refer to a signal processing approach toward resolution enhancement because the term "super" in "super resolution" represents very well the characteristics of the technique overcoming the inherent resolution limitation of LR imaging systems. The major advantage of the signal processing approach is that it may cost less and the existing LR imaging systems can be still utilized. The SR image reconstruction is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including medical imaging, satellite imaging, and video applications. The goal of this article is to introduce the concept of SR algorithms to readers who are unfamiliar with this area and to provide a review for experts. To this purpose, we present the technical review of various existing SR methodologies which are often employed. Before presenting the review of existing SR algorithms, we first model the LR image acquisition process.

3,491 citations

Journal ArticleDOI
TL;DR: This paper proposes an alternate approach using L/sub 1/ norm minimization and robust regularization based on a bilateral prior to deal with different data and noise models and demonstrates its superiority to other super-resolution methods.
Abstract: Super-resolution reconstruction produces one or a set of high-resolution images from a set of low-resolution images. In the last two decades, a variety of super-resolution methods have been proposed. These methods are usually very sensitive to their assumed model of data and noise, which limits their utility. This paper reviews some of these methods and addresses their shortcomings. We propose an alternate approach using L/sub 1/ norm minimization and robust regularization based on a bilateral prior to deal with different data and noise models. This computationally inexpensive method is robust to errors in motion and blur estimation and results in images with sharp edges. Simulation results confirm the effectiveness of our method and demonstrate its superiority to other super-resolution methods.

2,175 citations

Journal ArticleDOI
TL;DR: A maximum a posteriori (MAP) framework for jointly estimating image registration parameters and the high-resolution image is presented and experimental results are provided to illustrate the performance of the proposed MAP algorithm using both visible and infrared images.
Abstract: In many imaging systems, the detector array is not sufficiently dense to adequately sample the scene with the desired field of view. This is particularly true for many infrared focal plane arrays. Thus, the resulting images may be severely aliased. This paper examines a technique for estimating a high-resolution image, with reduced aliasing, from a sequence of undersampled frames. Several approaches to this problem have been investigated previously. However, in this paper a maximum a posteriori (MAP) framework for jointly estimating image registration parameters and the high-resolution image is presented. Several previous approaches have relied on knowing the registration parameters a priori or have utilized registration techniques not specifically designed to treat severely aliased images. In the proposed method, the registration parameters are iteratively updated along with the high-resolution image in a cyclic coordinate-descent optimization procedure. Experimental results are provided to illustrate the performance of the proposed MAP algorithm using both visible and infrared images. Quantitative error analysis is provided and several images are shown for subjective evaluation.

936 citations

Proceedings ArticleDOI
01 Jul 2000
TL;DR: From a spectral analysis of light field signals and using the sampling theorem, the analytical functions to determine the minimum sampling rate for light field rendering are derived and this approach bridges the gap between image- based rendering and traditional geometry-based rendering.
Abstract: This paper studies the problem of plenoptic sampling in image-based rendering (IBR). From a spectral analysis of light field signals and using the sampling theorem, we mathematically derive the analytical functions to determine the minimum sampling rate for light field rendering. The spectral support of a light field signal is bounded by the minimum and maximum depths only, no matter how complicated the spectral support might be because of depth variations in the scene. The minimum sampling rate for light field rendering is obtained by compacting the replicas of the spectral support of the sampled light field within the smallest interval. Given the minimum and maximum depths, a reconstruction filter with an optimal and constant depth can be designed to achieve anti-aliased light field rendering.Plenoptic sampling goes beyond the minimum number of images needed for anti-aliased light field rendering. More significantly, it utilizes the scene depth information to determine the minimum sampling curve in the joint image and geometry space. The minimum sampling curve quantitatively describes the relationship among three key elements in IBR systems: scene complexity (geometrical and textural information), the number of image samples, and the output resolution. Therefore, plenoptic sampling bridges the gap between image-based rendering and traditional geometry-based rendering. Experimental results demonstrate the effectiveness of our approach.

793 citations