scispace - formally typeset
Search or ask a question
Author

Osman Doluca

Bio: Osman Doluca is an academic researcher from İzmir University of Economics. The author has contributed to research in topics: Antiparallel (biochemistry) & G-quadruplex. The author has an hindex of 8, co-authored 21 publications receiving 305 citations. Previous affiliations of Osman Doluca include Massey University & International Burch University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a colorimetric and fluorescent chemosensor (chemosensor 2) for the detection of cyanide anions in aqueous solution has been designed and synthesized in high yield.

41 citations

Journal ArticleDOI
TL;DR: The phylogenetic analysis as described in this work can greatly improve the discovery of functional G-quadruplex structures and may explain unknown regulatory patterns.
Abstract: Many studies show that short non-coding sequences are widely conserved among regulatory elements. More and more conserved sequences are being discovered since the development of next generation sequencing technology. A common approach to identify conserved sequences with regulatory roles relies on topological changes such as hairpin formation at the DNA or RNA level. G-quadruplexes, non-canonical nucleic acid topologies with little established biological roles, are increasingly considered for conserved regulatory element discovery. Since the tertiary structure of G-quadruplexes is strongly dependent on the loop sequence which is disregarded by the generally accepted algorithm, we hypothesized that G-quadruplexes with similar topology and, indirectly, similar interaction patterns, can be determined using phylogenetic clustering based on differences in the loop sequences. Phylogenetic analysis of 52 G-quadruplex forming sequences in the Escherichia coli genome revealed two conserved G-quadruplex motifs with a potential regulatory role. Further analysis revealed that both motifs tend to form hairpins and G quadruplexes, as supported by circular dichroism studies. The phylogenetic analysis as described in this work can greatly improve the discovery of functional G-quadruplex structures and may explain unknown regulatory patterns.

38 citations

Journal ArticleDOI
TL;DR: G‐rich oligonucleotides containing 2–4 insertions of twisted intercalating nucleic acid (TINA) monomers are demonstrated to disrupt the formation of G‐quadruplexes and form stable antiparallel triplexes with target DNA duplexes.
Abstract: The majority of studies on DNA triple helices have been focused on pH-sensitive parallel triplexes with Hoogsteen CT-containing third strands that require protonation of cytosines. Reverse Hoogsteen GT/GA-containing antiparallel triplex-forming oligonucleotides (TFOs) do not require an acidic pH but their applicability in triplex technology is limited because of their tendency to form undesired highly stable aggregates such as G-quadruplexes. In this study, G-rich oligonucleotides containing 2-4 insertions of twisted intercalating nucleic acid(TINA) monomers are demonstrated to disrupt the formation of G-quadruplexes and form stable antiparallel triplexes with target DNA duplexes. The structure of TINA-incorporated oligonucleotides was optimized, the rules of their design were established and the optimal triplex-forming oligonucleotides were selected. These oligonucleotides show high affinity towards a 16 bp homopurine model sequence from the HIV-1 genome; dissociation constants as low as 160 nM are observed whereas the unmodified TFO does not show any triplex formation and instead forms an intermolecular G-quadruplex with T(m) exceeding 90°C in the presence of 50 mM NaCl. Here we present a set of rules that help to reach the full potential of TINATFOs and demonstrate the effect of TINA on the formation and stability of triple helical DNA.

30 citations

Journal ArticleDOI
TL;DR: A series of novel 1,4-naphthoquinone-triazole hybrids, N-(3-amino-1, 4-dioxo-1),4-dihydronaphthalen-2-yl)-2-(4-R-1H-1-2,3-Triazol- 1-yl)acetamide, was synthesized by click chemistry in the presence of sodium ascorbate and copper(II) sulfate

21 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This comprehensive and critical review of coumarin-based small-molecule fluorescent chemosensors during the period of 2012-2018 may facilitate the development of more powerful fluorescent chemOSensors for broad and exciting applications in the future.
Abstract: Coumarins are a very large family of compounds containing the unique 2H-chromen-2-one motif, as it is known according to IUPAC nomenclature. Coumarin derivatives are widely found in nature, especially in plants and are constituents of several essential oils. Up to now, thousands of coumarin derivatives have been isolated from nature or produced by chemists. More recently, the coumarin platform has been widely adopted in the design of small-molecule fluorescent chemosensors because of its excellent biocompatibility, strong and stable fluorescence emission, and good structural flexibility. This scaffold has found wide applications in the development of fluorescent chemosensors in the fields of molecular recognition, molecular imaging, bioorganic chemistry, analytical chemistry, materials chemistry, as well as in the biology and medical science communities. This review focuses on the important progress of coumarin-based small-molecule fluorescent chemosensors during the period of 2012-2018. This comprehensive and critical review may facilitate the development of more powerful fluorescent chemosensors for broad and exciting applications in the future.

668 citations

Journal ArticleDOI
TL;DR: An improved version of a G-quadruplex sequencing method is employed to generate whole genome G4 maps for 12 species that include widely studied model organisms and also pathogens of clinical relevance, and reveals that the enrichment of OQs in gene promoters is particular to mammals such as mouse and human, among the species studied.
Abstract: The S.B. research group is supported by programme grant funding from Cancer Research UK (C9681/A18618), European Research Council Advanced Grant No. 339778, a Wellcome Trust Senior Investigator Award (grant 209441/z/17/z) and by core funding from Cancer Research UK (C14303/A17197). We are grateful to the Biotechnology and Biological Sciences Research Council (BBSRC) and Illumina for the CASE studentship supporting V.S.C. (BB/I015477/1).

245 citations

Journal ArticleDOI
TL;DR: This review aims to examine the synthesis methods and antimicrobial behavior of graphene-based materials, offering an insight into how the nanocomposites influence their antimicrobial abilities.
Abstract: Biofouling is an inevitable obstacle that impairs the overall performance of polymeric membranes, including selectivity, permeability, and long-term stability. With an increase of various biocides being utilized to inhibit biofilm formation, the enhancement of bacterial resistance against traditional bactericides is increasingly becoming an extra challenge in the development of antimicrobial membranes. Graphene-based nanomaterials are emerging as a new class of strong antibacterial agents due to their oxygen-containing functional groups, sharp edges of the one-atom-thick laminar structure, and synergistic effect with other biocides. They have been successfully employed not only to confer favorable antibacterial abilities, but also to impart superior separation properties to polymeric membranes. However, the exact bactericidal mechanism of graphene remains unclear. This review aims to examine the synthesis methods and antimicrobial behavior of graphene-based materials, offering an insight into how the nanocomposites influence their antimicrobial abilities. Most importantly, the use of graphene-based nanomaterials in the design and development of antimicrobial membranes is highlighted.

166 citations

Journal ArticleDOI
TL;DR: A novel luminescent G-quadruplex-selective iridium(iii) complex was employed in a G- quadruplex -based detection assay for PTK7.
Abstract: A series of luminescent iridium(iii) complexes were synthesised and evaluated for their ability to act as luminescent G-quadruplex-selective probes. The iridium(iii) complex 9 [Ir(pbi)2(5,5-dmbpy)]PF6 (where pbi = 2-phenyl-1H-benzo[d]imidazole; 5,5-dmbpy = 5,5'-dimethyl-2,2'-bipyridine) exhibited high luminescence for G-quadruplex DNA compared to dsDNA and ssDNA, and was employed to construct a G-quadruplex-based assay for protein tyrosine kinase-7 (PTK7) in aqueous solution. PTK7 is an important biomarker for a range of leukemias and solid tumors. In the presence of PTK7, the specific binding of the sgc8 aptamer sequence triggers a structural transition and releases the G-quadruplex-forming sequence. The formation of the nascent G-quadruplex structure is then detected by the G-quadruplex-selective iridium(iii) complex with an enhanced luminescent response. Moreover, the application of the assay for detecting PTK7 in cellular debris and membrane protein extract was demonstrated. To our knowledge, this is the first G-quadruplex-based assay for PTK7.

164 citations

Journal ArticleDOI
TL;DR: In this article, a correlation between G4 structure formation and an increased intratumor heterogeneity was identified, which suggests that G4 structures might allow breast cancer stratification and support the identification of new personalized treatment options.
Abstract: DNA and RNA can fold into a variety of alternative conformations. In recent years, a particular nucleic acid structure was discussed to play a role in malignant transformation and cancer development. This structure is called a G-quadruplex (G4). G4 structure formation can drive genome instability by creating mutations, deletions and stimulating recombination events. The importance of G4 structures in the characterization of malignant cells was currently demonstrated in breast cancer samples. In this analysis a correlation between G4 structure formation and an increased intratumor heterogeneity was identified. This suggests that G4 structures might allow breast cancer stratification and supports the identification of new personalized treatment options. Because of the stability of G4 structures and their presence within most human oncogenic promoters and at telomeres, G4 structures are currently tested as a therapeutic target to downregulate transcription or to block telomere elongation in cancer cells. To date, different chemical molecules (G4 ligands) have been developed that aim to target G4 structures. In this review we discuss and compare G4 function and relevance for therapeutic approaches and their impact on cancer development for three cancer entities, which differ significantly in their amount and type of mutations: pancreatic cancer, leukemia and malignant melanoma. G4 structures might present a promising new strategy to individually target tumor cells and could support personalized treatment approaches in the future.

159 citations