scispace - formally typeset
Search or ask a question
Author

Oswald J. Schmitz

Bio: Oswald J. Schmitz is an academic researcher from Yale University. The author has contributed to research in topics: Ecosystem & Trophic level. The author has an hindex of 62, co-authored 184 publications receiving 16212 citations. Previous affiliations of Oswald J. Schmitz include Utah State University & University of Guelph.


Papers
More filters
Journal ArticleDOI
10 Jan 2014-Science
TL;DR: The status, threats, and ecological importance of the 31 largest mammalian carnivores globally are reviewed and a Global Large Carnivore Initiative is proposed to coordinate local, national, and international research, conservation, and policy.
Abstract: Large carnivores face serious threats and are experiencing massive declines in their populations and geographic ranges around the world. We highlight how these threats have affected the conservation status and ecological functioning of the 31 largest mammalian carnivores on Earth. Consistent with theory, empirical studies increasingly show that large carnivores have substantial effects on the structure and function of diverse ecosystems. Significant cascading trophic interactions, mediated by their prey or sympatric mesopredators, arise when some of these carnivores are extirpated from or repatriated to ecosystems. Unexpected effects of trophic cascades on various taxa and processes include changes to bird, mammal, invertebrate, and herpetofauna abundance or richness; subsidies to scavengers; altered disease dynamics; carbon sequestration; modified stream morphology; and crop damage. Promoting tolerance and coexistence with large carnivores is a crucial societal challenge that will ultimately determine the fate of Earth's largest carnivores and all that depends upon them, including humans.

2,441 citations

Journal ArticleDOI
TL;DR: Trophic cascades in terrestrial systems, although not a universal phenomenon, are a consistent response throughout the published studies reviewed here, and this analysis suggests that they occur more frequently in terrestrial Systems than currently believed.
Abstract: We present a quantitative synthesis of trophic cascades in terrestrial systems using data from 41 studies, reporting 60 independent tests. The studies covered a wide range of taxa in various terrestrial systems with varying degrees of species diversity. We quantified the average magnitude of direct effects of carnivores on herbivore prey and indirect effects of carnivores on plants. We examined how the effect magnitudes varied with type of carnivores in the study system, food web diversity, and experimental protocol. A metaanalysis of the data revealed that trophic cascades were common among the studies. Exceptions to this general trend did arise. In some cases, trophic cascades were expected not to occur, and they did not. In other cases, the direct effects of carnivores on herbivores were stronger than the indirect effects of carnivores on plants, indicating that top‐down effects attenuated. Top‐down effects usually attenuated whenever plants contained antiherbivore defenses or when herbivore ...

948 citations

Journal ArticleDOI
TL;DR: It is shown that simple trade-off behaviour can lead to both positive and negative indirect effects of predators on plant resources and hence can explain considerable contingency on the nature and strength of cascading effects among systems.
Abstract: Trophic cascades are textbook examples of predator indirect effects on ecological systems. Yet there is considerable debate about their nature, strength and overall importance. This debate stems in part from continued uncertainty about the ultimate mechanisms driving cascading effects. We present a synthesis of empirical evidence in support of one possible ultimate mechanism: the foraging-predation risk trade-offs undertaken by intermediary species. We show that simple trade-off behaviour can lead to both positive and negative indirect effects of predators on plant resources and hence can explain considerable contingency on the nature and strength of cascading effects among systems. Thus, predicting the sign and strength of indirect effect simply requires knowledge of habitat and resource use by prey with regard to predators presence, habitat use and hunting mode. The synthesis allows us to postulate a hypothesis for new conceptualization of trophic cascades which is to be viewed as an ultimate trade-off between intervening species. In this context, different predators apply different rules of engagement based on their hunting mode and habitat use. These different rules then determine whether behavioural effects persist or attenuate at the level of the food chain.

945 citations

Journal ArticleDOI
01 Jul 1997-Ecology
TL;DR: In this paper, the authors evaluated the impact of predator manipulations on trophic cascades in an old-field system composed of herbaceous plants, grasshoppers, her-bivores, and spider predators.
Abstract: Trophic cascades are regarded as important signals for top-down control of food web dynamics. Although there is clear evidence supporting the existence of trophic cascades, the mechanisms driving this important dynamic are less clear. Trophic cascades could arise through direct population-level effects, in which predators prey on herbivores, thereby decreasing the abundance of herbivores that impact plant trophic levels. Trophic cascades could also arise through indirect behavioral-level effects, in which herbivore prey shift their foraging behavior in response to predation risk. Such behavioral shifts can result in reduced feeding time and increased starvation risk, again lowering the impact of her- bivores on plants. We evaluated the relative importance of these two mechanisms, using field experiments in an old-field system composed of herbaceous plants, grasshopper her- bivores, and spider predators. We created two treatments, Risk spiders that had their che- licerae glued, and Predation spiders that remained unmanipulated. We then systematically evaluated the impacts of these predator manipulations at behavioral, population, and food web scales in experimental mesocosms. At the behavioral level, grasshoppers did not dis- tinguish between Risk spiders and Predation spiders. Grasshoppers exhibited significant shifts in feeding-time budget in the presence of spiders vs. when alone. At the grasshopper population level, Risk spider and Predation spider treatments caused the same level of grasshopper mortality, which was significantly higher than mortality in a control without spiders, indicating that the predation effects were compensatory to risk effects. At the food web level, Risk spider and Predation spider treatments decreased the impact grasshoppers had on grass biomass, supporting the existence of a trophic cascade. Moreover, Risk spider and Predation spider treatments produced statistically similar effects, again indicating that predation effects on trophic dynamics were compensatory to risk effects. We conclude that indirect effects resulting from antipredator behavior can produce trophic-level effects that are similar in form and strength to those generated by direct predation events.

856 citations

Journal ArticleDOI
15 Feb 2008-Science
TL;DR: A 3-year experiment in grassland mesocosms revealed that actively hunting spiders reduced plant species diversity and enhanced aboveground net primary production and nitrogen mineralization rate, whereas sit-and-wait ambush spiders had opposite effects.
Abstract: The way predators control their prey populations is determined by the interplay between predator hunting mode and prey antipredator behavior. It is uncertain, however, how the effects of such interplay control ecosystem function. A 3-year experiment in grassland mesocosms revealed that actively hunting spiders reduced plant species diversity and enhanced aboveground net primary production and nitrogen mineralization rate, whereas sit-and-wait ambush spiders had opposite effects. These effects arise from the different responses to the two different predators by their grasshopper prey-the dominant herbivore species that controls plant species composition and accordingly ecosystem functioning. Predator hunting mode is thus a key functional trait that can help to explain variation in the nature of top-down control of ecosystems.

456 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Book
01 Jan 1998
TL;DR: In this book the authors investigate the nonlinear dynamics of the self-regulation of social and economic behavior, and of the closely related interactions among species in ecological communities.
Abstract: Every form of behavior is shaped by trial and error. Such stepwise adaptation can occur through individual learning or through natural selection, the basis of evolution. Since the work of Maynard Smith and others, it has been realized how game theory can model this process. Evolutionary game theory replaces the static solutions of classical game theory by a dynamical approach centered not on the concept of rational players but on the population dynamics of behavioral programs. In this book the authors investigate the nonlinear dynamics of the self-regulation of social and economic behavior, and of the closely related interactions among species in ecological communities. Replicator equations describe how successful strategies spread and thereby create new conditions that can alter the basis of their success, i.e., to enable us to understand the strategic and genetic foundations of the endless chronicle of invasions and extinctions that punctuate evolution. In short, evolutionary game theory describes when to escalate a conflict, how to elicit cooperation, why to expect a balance of the sexes, and how to understand natural selection in mathematical terms. Comprehensive treatment of ecological and game theoretic dynamics Invasion dynamics and permanence as key concepts Explanation in terms of games of things like competition between species

4,480 citations

Journal ArticleDOI
TL;DR: This framework is used to discuss why the metacommunity concept is useful in modifying existing ecological thinking and illustrate this with a number of both theoretical and empirical examples.
Abstract: The metacommunity concept is an important way to think about linkages between different spatial scales in ecology. Here we review current understanding about this concept. We first investigate issues related to its definition as a set of local communities that are linked by dispersal of multiple potentially interacting species. We then identify four paradigms for metacommunities: the patch-dynamic view, the species-sorting view, the mass effects view and the neutral view, that each emphasizes different processes of potential importance in metacommunities. These have somewhat distinct intellectual histories and we discuss elements related to their potential future synthesis. We then use this framework to discuss why the concept is useful in modifying existing ecological thinking and illustrate this with a number of both theoretical and empirical examples. As ecologists strive to understand increasingly complex mechanisms and strive to work across multiple scales of spatio-temporal organization, concepts like the metacommunity can provide important insights that frequently contrast with those that would be obtained with more conventional approaches based on local communities alone.

4,266 citations

Journal ArticleDOI
11 May 2000-Nature
TL;DR: The large ecological and societal consequences of changing biodiversity should be minimized to preserve options for future solutions to global environmental problems.
Abstract: Human alteration of the global environment has triggered the sixth major extinction event in the history of life and caused widespread changes in the global distribution of organisms. These changes in biodiversity alter ecosystem processes and change the resilience of ecosystems to environmental change. This has profound consequences for services that humans derive from ecosystems. The large ecological and societal consequences of changing biodiversity should be minimized to preserve options for future solutions to global environmental problems.

3,977 citations