scispace - formally typeset
Search or ask a question
Author

Ou Tan

Other affiliations: Cleveland Clinic
Bio: Ou Tan is an academic researcher from Oregon Health & Science University. The author has contributed to research in topics: Glaucoma & Optical coherence tomography. The author has an hindex of 24, co-authored 67 publications receiving 2029 citations. Previous affiliations of Ou Tan include Cleveland Clinic.


Papers
More filters
Journal ArticleDOI
TL;DR: OCT angiography can detect the abnormalities of ONH perfusion and has the potential to reveal the ONH blood flow mechanism related to glaucoma, a pilot study indicates.
Abstract: Optic nerve head (ONH) blood flow may be associated with glaucoma development. A reliable method to quantify ONH blood flow could provide insight into the vascular component of glaucoma pathophysiology. Using ultrahigh-speed optical coherence tomography (OCT), we developed a new 3D angiography algorithm called split-spectrum amplitude-decorrelation angiography (SSADA) for imaging ONH microcirculation. In this study, a method to quantify SSADA results was developed and used to detect ONH perfusion changes in early glaucoma. En face maximum projection was used to obtain 2D disc angiograms, from which the average decorrelation values (flow index) and the percentage area occupied by vessels (vessel density) were computed from the optic disc and a selected region within it. Preperimetric glaucoma patients had significant reductions of ONH perfusion compared to normals. This pilot study indicates OCT angiography can detect the abnormalities of ONH perfusion and has the potential to reveal the ONH blood flow mechanism related to glaucoma.

424 citations

Journal ArticleDOI
TL;DR: High-resolution Fourier-domain OCT mapped corneal epithelial thickness with good repeatability in both normal and keratoconic eyes and found that keratoconus was characterized by apical epithelial thinning.

286 citations

Patent
David Huang1, Ou Tan1, Yan Li1
28 Apr 2004
TL;DR: In this article, the retinal sublayer characteristic of an eye was measured using a plurality of sets of reflection intensity values and a progressive refinement boundary detection algorithm was used to determine at least one boundary location associated with the retina.
Abstract: Methods and systems are provided for measuring a retinal sublayer characteristic of an eye. A plurality of axial scans are performed over an area of the retina of the eye. Reflections are measured during the axial scans to determine a plurality of sets of reflection intensity values. A given set of reflection intensity values is associated with one of the plurality of axial scans. A progressive refinement boundary detection algorithm is performed using the plurality of sets of reflection intensity values to determine at least one boundary location associated with the retinal sublayer for each of the plurality of sets of reflection intensity values. The retinal sublayer characteristic is determined in response to the determined boundary locations.

133 citations

Journal ArticleDOI
TL;DR: High‐resolution Fourier‐domain OCT could map corneal, epithelial, and stromal thicknesses and these new diagnostic variables might be useful in the detection of early keratoconus.
Abstract: Purpose To screen for subclinical keratoconus by analyzing corneal, epithelial, and stromal thickness map patterns with Fourier-domain optical coherence tomography (OCT). Setting Four centers in the United States. Design Cross-sectional observational study. Methods Eyes of normal subjects, subclinical keratoconus eyes, and the topographically normal eye of a unilateral keratoconus patient were studied. Corneas were scanned using a 26 000 Hz Fourier-domain OCT system (RTVue). Normal subjects were divided into training and evaluation groups. Corneal, epithelial, and stromal thickness maps and derived diagnostic indices, including pattern standard deviation (PSD) variables and pachymetric map–based keratoconus risk scores, were calculated from the OCT data. Area under the receiver operating characteristic curve (AUC) analysis was used to evaluate the diagnostic accuracy of the indices. Results The study comprised 150 eyes of 83 normal subjects, 50 subclinical keratoconus eyes of 32 patients, and 1 topographically normal eye of a unilateral keratoconus patient. Subclinical keratoconus was characterized by inferotemporal thinning of the cornea, epithelium, and stroma. The PSD values for corneal ( P P P = .049) thickness maps were all significantly higher in subclinical keratoconic eyes than in the normal group. The diagnostic accuracy was significantly higher for PSD variables (pachymetric PSD, AUC = 0.941; epithelial PSD, AUC = 0.985; stromal PSD, AUC = 0.924) than for the pachymetric map–based keratoconus risk score (AUC = 0.735). Conclusions High-resolution Fourier-domain OCT could map corneal, epithelial, and stromal thicknesses. Corneal and sublayer thickness changes in subclinical keratoconus could be detected with high accuracy using PSD variables. These new diagnostic variables might be useful in the detection of early keratoconus. Financial Disclosures Oregon Health and Science University (OHSU) and Drs. Li, Tan, and Huang have a significant financial interest in Optovue, Inc. These potential conflicts have been reviewed and managed by OHSU. Dr. Brass receives research grants from Optovue, Inc. Drs. Chamberlain and Weiss have no financial or proprietary interest in any material or method mentioned.

113 citations

Journal ArticleDOI
TL;DR: There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss, and blood flow measurement may be useful as an independent assessment of glauca severity.
Abstract: Purpose. To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma.

100 citations


Cited by
More filters
Journal Article
TL;DR: In this article, optical coherence tomography is used for high-resolution, noninvasive imaging of the human retina, including the macula and optic nerve head in normal human subjects.
Abstract: Objective: To demonstrate optical coherence tomography for high-resolution, noninvasive imaging of the human retina. Optical coherence tomography is a new imaging technique analogous to ultrasound B scan that can provide cross-sectional images of the retina with micrometer-scale resolution. Design: Survey optical coherence tomographic examination of the retina, including the macula and optic nerve head in normal human subjects. Settings Research laboratory. Participants: Convenience sample of normal human subjects. Main Outcome Measures: Correlation of optical coherence retinal tomographs with known normal retinal anatomy. Results: Optical coherence tomographs can discriminate the cross-sectional morphologic features of the fovea and optic disc, the layered structure of the retina, and normal anatomic variations in retinal and retinal nerve fiber layer thicknesses with 10- μm depth resolution. Conclusion: Optical coherence tomography is a potentially useful technique for high depth resolution, cross-sectional examination of the fundus.

1,409 citations

Journal ArticleDOI
TL;DR: The integration of OCTA in multimodal imaging in the evaluation of retinal vascular occlusive diseases, diabetic retinopathy, uveitis, inherited diseases, age-related macular degeneration, and disorders of the optic nerve is presented.

988 citations

Journal ArticleDOI
15 Apr 2015
TL;DR: OCTA is quick and non-invasive, and provides volumetric data with the clinical capability of specifically localizing and delineating pathology along with the ability to show both structural and blood flow information in tandem, its current limitations include a relatively small field of view.
Abstract: Optical coherence tomography angiography (OCTA) is a new, non-invasive imaging technique that generates volumetric angiography images in a matter of seconds. This is a nascent technology with a potential wide applicability for retinal vascular disease. At present, level 1 evidence of the technology’s clinical applications doesn’t exist. In this paper, we introduce the technology, review the available English language publications regarding OCTA, and compare it with the current angiographic gold standards, fluorescein angiography (FA) and indocyanine green angiography (ICGA). Finally we summarize its potential application to retinal vascular diseases. OCTA is quick and non-invasive, and provides volumetric data with the clinical capability of specifically localizing and delineating pathology along with the ability to show both structural and blood flow information in tandem. Its current limitations include a relatively small field of view, inability to show leakage, and proclivity for image artifact due to patient movement/blinking. Published studies hint at OCTA’s potential efficacy in the evaluation of common ophthalmologic diseases such age related macular degeneration (AMD), diabetic retinopathy, artery and vein occlusions, and glaucoma. OCTA can detect changes in choroidal blood vessel flow and can elucidate the presence of choroidal neovascularization (CNV) in a variety of conditions but especially in AMD. It provides a highly detailed view of the retinal vasculature, which allows for accurate delineation of the foveal avascular zone (FAZ) in diabetic eyes and detection of subtle microvascular abnormalities in diabetic and vascular occlusive eyes. Optic disc perfusion in glaucomatous eyes is notable as well on OCTA. Further studies are needed to more definitively determine OCTA’s utility in the clinical setting and to establish if this technology may offer a non-invasive option of visualizing the retinal vasculature in detail.

785 citations

Journal ArticleDOI
TL;DR: Optical coherence tomography angiography provides depth-resolved information and detailed images of CNV in neovascular AMD and provides more distinct vascular network patterns that were less obscured by subretinal hemorrhage.

636 citations

Journal ArticleDOI
TL;DR: The methods used to create OCTA images, the practical applications of OCTA in light of invasive dye‐imaging studies (e.g. fluorescein angiography) and clinical studies demonstrating the utility of OCT a for research and clinical practice are discussed.

621 citations