scispace - formally typeset
Search or ask a question
Author

Ousama El-Hillal

Bio: Ousama El-Hillal is an academic researcher from Beth Israel Deaconess Medical Center. The author has contributed to research in topics: Receptor tyrosine kinase & Phosphorylation. The author has an hindex of 1, co-authored 1 publications receiving 440 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that phosphatidylinositol‐3,4,5‐trisphosphate interacting with the PH domain acts as an upstream activation signal for Tec kinases, resulting in Tec kinase‐dependent phospholipase Cγ tyrosine phosphorylation and inositol trisph phosphate production.
Abstract: Tec family non-receptor tyrosine kinases have been implicated in signal transduction events initiated by cell surface receptors from a broad range of cell types, including an essential role in B-cell development. A unique feature of several Tec members among known tyrosine kinases is the presence of an N-terminal pleckstrin homology (PH) domain. We directly demonstrate that phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3) interacting with the PH domain acts as an upstream activation signal for Tec kinases, resulting in Tec kinase-dependent phospholipase Cgamma (PLCgamma) tyrosine phosphorylation and inositol trisphosphate production. In addition, we show that this pathway is blocked when an SH2-containing inositol phosphatase (SHIP)-dependent inhibitory receptor is engaged. Together, our results suggest a general mechanism whereby PtdIns-3,4,5-P3 regulates receptor-dependent calcium signals through the function of Tec kinases.

441 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Fc gamma Rs offer a paradigm for the biological significance of balancing activation and inhibitory signaling in the expanding family of activation/inhibitory receptor pairs found in the immune system.
Abstract: Since the description of the first mouse knockout for an IgG Fc receptor seven years ago, considerable progress has been made in defining the in vivo functions of these receptors in diverse biological systems. The role of activating Fc gamma Rs in providing a critical link between ligands and effector cells in type II and type III inflammation is now well established and has led to a fundamental revision of the significance of these receptors in initiating cellular responses in host defense, in determining the efficacy of therapeutic antibodies, and in pathological autoimmune conditions. Considerable progress has been made in the last two years on the in vivo regulation of these responses, through the appreciation of the importance of balancing activation responses with inhibitory signaling. The inhibitory FcR functions in the maintenance of peripheral tolerance, in regulating the threshold of activation responses, and ultimately in terminating IgG mediated effector stimulation. The consequences of deleting the inhibitory arm of this system are thus manifested in both the afferent and efferent immune responses. The hyperresponsive state that results leads to greatly magnified effector responses by cytotoxic antibodies and immune complexes and can culminate in autoimmunity and autoimmune disease when modified by environmental or genetic factors. Fc gamma Rs offer a paradigm for the biological significance of balancing activation and inhibitory signaling in the expanding family of activation/inhibitory receptor pairs found in the immune system.

1,771 citations

Journal ArticleDOI
TL;DR: The activation and deactivation of each PLC isoform are likely highly regulated processes and are susceptible to different modes of activation.
Abstract: Eleven distinct isoforms of phosphoinositide-specific phospholipase C (PLC), which are grouped into four subfamilies (beta, gamma, delta, and epsilon), have been identified in mammals. These isozymes catalyze the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] to inositol 1,4,5-trisphosphate and diacylglycerol in response to the activation of more than 100 different cell surface receptors. All PLC isoforms contain X and Y domains, which form the catalytic core, as well as various combinations of regulatory domains that are common to many other signaling proteins. These regulatory domains serve to target PLC isozymes to the vicinity of their substrate or activators through protein-protein or protein-lipid interactions. These domains (with their binding partners in parentheses or brackets) include the pleckstrin homology (PH) domain [PtdIns(3)P, beta gamma subunits of G proteins] and the COOH-terminal region including the C2 domain (GTP-bound alpha subunit of Gq) of PLC-beta; the PH domain [PtdIns(3,4,5)P3] and Src homology 2 domain [tyrosine-phosphorylated proteins, PtdIns(3,4,5)P3] of PLC-gamma; the PH domain [PtdIns(4,5)P2] and C2 domain (Ca2+) of PLC-delta; and the Ras binding domain (GTP-bound Ras) of PLC-epsilon. The presence of distinct regulatory domains in PLC isoforms renders them susceptible to different modes of activation. Given that the partners that interact with these regulatory domains of PLC isozymes are generated or eliminated in specific regions of the cell in response to changes in receptor status, the activation and deactivation of each PLC isoform are likely highly regulated processes.

1,595 citations

Journal ArticleDOI
TL;DR: This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Abstract: Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.

1,239 citations

Journal ArticleDOI
TL;DR: The most recent advances in the understanding of the role of PI 3-K in cell function are reviewed by dissecting the contribution of each of its lipid products.

1,034 citations

Journal ArticleDOI
TL;DR: The current understanding of the regulation and function of the Akt kinase is presented and the common and unique features of the activation processes of Akt and the AGC and Tec kinase families are discussed.
Abstract: The protein kinase Akt/PKB is activated via a multistep process by a variety of signals. In the early steps of this process, PI-3 kinase-generated D3-phosphorylated phosphoinositides bind the Akt PH domain and induce the translocation of the kinase to the plasma membrane where it co-localizes with phosphoinositide-dependent kinase-1. By binding to the PH domains of both Akt and phosphoinositide-dependent kinase-1, D3-phosphorylated phosphoinositides appear to also induce conformational changes that permit phosphoinositide-dependent kinase-1 to phosphorylate the activation loop of Akt. The paradigm of Akt activation via phosphoinositide-dependent phosphorylation provided a framework for research into the mechanism of activation of other members of the AGC kinase group (p70S6K, PKC, and PKA) and members of the Tec tyrosine kinase family (TecI, TecII, Btk/Atk, Itk/Tsk/Emt, Txk/Rlk, and Bm/Etk). The result was the discovery that these kinases and Akt are activated by overlapping pathways. In this review, we present our current understanding of the regulation and function of the Akt kinase and we discuss the common and unique features of the activation processes of Akt and the AGC and Tec kinase families. In addition, we present an overview of the biosynthesis of phosphoinositides that contribute to the regulation of these kinases.

990 citations