scispace - formally typeset
Search or ask a question
Author

P. A. Batt

Bio: P. A. Batt is an academic researcher from Monash Medical Centre. The author has contributed to research in topics: Blastocyst & Embryo culture. The author has an hindex of 7, co-authored 8 publications receiving 1006 citations. Previous affiliations of P. A. Batt include Monash University, Clayton campus.

Papers
More filters
Journal ArticleDOI
TL;DR: Investigation of sheep zygote development of amino acids, ammonium, vitamins, and culture of embryos in groups in Synthetic Oviduct Fluid medium supplemented with BSA found indirect evidence that ruminant embryos utilize amino acids to a greater extent than do rodent embryos.
Abstract: The aim of this study was to develop a serum-free culture system that could support high levels of cleavage and blastocyst formation from sheep zygotes developed in vitro. To this end, we investigated the effects on sheep zygote development of amino acids, ammonium, vitamins, and culture of embryos in groups in Synthetic Oviduct Fluid (SOF) medium supplemented with BSA (32 mg/ml). The inclusion of amino acids in the culture medium had no effect on the percentage of embryos arrested at the 8-16-cell stage when embryos were cultured singly in the same drop of medium for 6 days (43% in SOF; 41% in SOF+amino acids). However, in medium containing all Eagle's amino acids, replacing the culture medium every 48 h to alleviate ammonium toxicity significantly decreased the number of arrested embryos (6%; p < 0.05) and significantly increased blastocyst cell number (52 cells in SOF; 105 cells in SOF+amino acids; p < 0.01) and the number of embryos developing to the blastocyst stage (29% in SOF; 67% in SOF+amino acids; p < 0.05). When the medium was renewed every 48 h, nonessential amino acids and glutamine also significantly decreased the number of arrested embryos (p < 0.05). Culturing embryos singly or in groups in SOF medium with all Eagle's amino acids that was renewed every 48 h resulted in significant increases in blastocyst hatching and mean cell number (47%, 31%, and 79%; 105, 136, and 173 cells for embryos cultured singly, in groups of 2, and in groups of 4, respectively). After culture in groups of 4, blastocyst cell numbers were equivalent to in vivo-developed controls (160 cells) and significantly greater than those developed in serum (103 cells; p < 0.01). Analysis of blastocyst metabolism, expressed on a per-cell basis, revealed that amino acids did not affect either glucose uptake or lactate production, whereas the addition of amino acids and vitamins resulted in a significant increase in both parameters (p < 0.01). A similar response was observed in serum-derived blastocysts. Ammonium production by sheep blastocysts after culture in the presence of amino acids was significantly greater than that produced by mouse blastocysts, indirect evidence that ruminant embryos utilize amino acids to a greater extent than do rodent embryos.(ABSTRACT TRUNCATED AT 400 WORDS)

558 citations

Journal ArticleDOI
TL;DR: Under 7% oxygen and with Miles BSA or HS, embryos were morphologically comparable to those developed in vivo, but the mean cell numbers in vitro were only approximately half those obtained in vivo.
Abstract: The effect of oxygen concentration and the source of protein in culture medium on the development of 2- to 4-cell goat embryos in vitro was investigated. Embryos were collected from superovulated Angora-Cashmere-cross goats 48 h after ovulation and cultured for 6 days in synthetic oviduct fluid (SOF) medium under one of two oxygen concentrations (20% or 7%) and in the presence of one of five protein sources; Miles bovine serum albumin (Miles BSA), Commonwealth Serum Laboratory bovine serum albumin (CSL BSA), goat serum (GS), fetal calf serum (FCS) and human serum (HS). In the presence of 20% oxygen the percentage of embryos reaching the expanded and/or hatched blastocyst stage in SOF medium containing Miles BSA was 29%, with a mean cell number per embryo of 28.1 +/- 6.0 (+/- s.e.m.). Use of an oxygen concentration of 7% significantly increased the percentage of embryos reaching this stage (80%, P less than 0.01) and the mean number of cells per embryo (65.3 +/- 8.2, P less than 0.01). The mean number of cells of the early-cleavage-stage embryos was significantly lower when the medium contained CSL BSA, GS or FCS (42.7 +/- 5.6, 29.0 +/- 6.1 and 21.3 +/- 3.2, respectively) than with Miles BSA (92.8 +/- 6.4) or HS (104.8 +/- 17.2) (P less than 0.01). Under 7% oxygen and with Miles BSA or HS, embryos were morphologically comparable to those developed in vivo, but the mean cell numbers in vitro were only approximately half those obtained in vivo.

143 citations

Journal ArticleDOI
TL;DR: The addition of hLIF to culture medium significantly improved the development of the embryos compared with control embryos prior to transfer, and the pregnancy rate for both groups was significantly lower than that for the group 1 ewes receiving two embryos soon after collection.
Abstract: Embryos were collected from ewes on Day 6 after estrus (Day 0 = estrus), placed in M2 culture medium, and assigned to 1 of 4 treatment groups. Some embryos were transferred to recipient ewes on Day 6 of their estrous cycle either in pairs (group 1) or singularly (group 2) within 3 h of collection. The remaining embryos were individually cultured for 48 h in an atmosphere of 5% CO2 in humidified air in either synthetic oviduct fluid (SOF) medium (group 3) or SOF containing 1,000 U/ml of recombinant human leukemia inhibitory factor (hLIF) (SOF + hLIF: group 4). These embryos were then transferred to recipient ewes on Day 8 of their estrous cycle. The addition of hLIF to culture medium significantly improved the development of the embryos compared with control embryos prior to transfer (blastocysts hatching from the zona pellucida: group 3 = 16% vs. group 4 = 64%, p less than 0.05; those degenerative: group 3 = 27% vs. group 4 = 9%, p less than 0.05) and the subsequent pregnancy rates of the recipient ewes, receiving a single embryo, at Day 70 of pregnancy (group 3 = 16% vs. group 4 = 50%, p less than 0.05). The pregnancy rate of ewes given embryos cultured for 48 h in SOF + hLIF prior to transfer (50%; group 4) was similar to the group 2 ewes receiving a single embryo soon after collection (52%), but the pregnancy rate for both groups was significantly lower than that for the group 1 ewes receiving two embryos soon after collection (89%: 53% twins, 36% singles; p less than 0.05).

115 citations

Journal ArticleDOI
TL;DR: The uptake of pyruvate and glucose by individual sheep oocytes and preattachment sheep embryos at each state of development up to the hatching blastocyst was determined using a microfluorescence technique.
Abstract: The uptake of pyruvate and glucose by individual sheep oocytes and preattachment sheep embryos at each state of development up to the hatching blastocyst was determined using a microfluorescence technique. After an initial increase at fertilization, pyruvate uptake was relatively constant (approximately 15 pmol/embryo/h) from the zygote through to the morula. Upon blastocyst formation and hatching, there were significant increases in uptake (39 pmol/embryo/h, P < 0.001; and 53 pmol/embryo/h, P < 0.001, respectively). In contrast to that of pyruvate, glucose uptake was very low (approximately 1 pmol/embryo/h) up to the time of genome activation (eight- to 16 cell stage), after which there were significant increases in uptake at each successive stage of development. By the hatching blastocyst stage, glucose uptake had reached 54 pmol/embryo/h. The ability of day-7 hatching blastocysts to oxidize pyruvate and glucose was determined indirectly by measuring the production of lactate when either substrate was present as the sole energy source. Unlike the mouse blastocyst, which has a considerable oxidative capacity for both pyruvate and glucose, the day-7 sheep blastocyst showed limited ability to oxidise either substrate. Rather, in the sheep blastocyst, 65% of pyruvate and 98% of glucose taken up could be accounted for as lactate. Such low levels of substrate oxidation appear to be inconsistent with the energy requirements of the proliferating preattachment ruminant blastocyst. The utilization of alternative substrates at the blastocyst, such as amino acids, is proposed.

97 citations

Journal ArticleDOI
TL;DR: Results from this study demonstrate that BOE cells create an environment favourable to embryonic development, and modifications made to carbohydrate levels in synthetic oviduct fluid medium and their effect on blastocyst development in vitro assessed.
Abstract: Co-culture remains a common method to support the development of bovine embryos, derived from IVM/IVF procedures. However, the mechanism by which somatic cells confer their benefit to the developing embryo remains undetermined. This study therefore analysed the changes made to the culture medium TCM-199, used in bovine embryo co-culture systems, by somatic cells and determined the effects of specific changes in medium composition on bovine embryo development in culture. Bovine oviduct epithelial (BOE), Buffalo rat liver (BRL) and fibroblast (3T3) cells were compared. The concentrations of glucose, L-lactate, pyruvate, amino acids, NH4+, H+ and the gas tensions of O2 and CO2 were measured in TCM-199 supplemented with 10% fetal calf serum (FCS) prior to and directly following 48 h incubation periods with each cell type. All three somatic cell types modified the carbohydrate composition of the media in a similar manner with the greatest changes made by the BOE cells. Notable alterations were an increase in the levels of L-lactate and pyruvate and a reduction in glucose concentration, which in the case of the BOE cells, fell from 5.55 mM to 2.67 mM. In order to determine the relevance of such changes in carbohydrate concentrations on bovine embryo development, modifications were made to carbohydrate levels in synthetic oviduct fluid (SOF) medium and their effect on blastocyst development in vitro assessed. In SOF medium supplemented with amino acids and BSA (SOFaa), significantly more zygotes developed to the blastocyst stage (64%; P < 0.01) than in SOFaa medium with the concentrations of glucose, D/L-lactate and pyruvate equivalent to those in TCM-199 (11%). Interestingly, when the levels of carbohydrates in SOFaa mimicked those present in TCM-199 following a 48 h incubation with BOE cells, 57% of zygotes reached the blastocyst stage. This improvement was ascribed to the reduction in glucose and increases in D/L-lactate and pyruvate concentrations in the culture system. Results from this study demonstrate that BOE cells create an environment favourable to embryonic development. The analysis of media samples by enzymatic methods meant that only the biologically active L-isomer of lactate was quantified. However, in SOFaa, both the L-isomer and inactive D-isomer are present in equimolar amounts. As such, culture media in which D/L-lactate syrup is used actually contain only 50% biologically active lactate meaning that all D/L-lactate concentrations are reported at twice the effective concentration. Therefore the effect of D/L-lactate concentration on blastocyst development was subsequently determined in this study. Blastocyst development was poor (24-36%) until the total D/L-lactate was present in the culture system at concentrations equal to or greater than 0.82 mM. However, blastocyst cell numbers remained low (60.1 +/- 6.9 - 78.5 +/- 6.6) until a total D/L-lactate concentration of 3.3 mM. This data reinforces that embryo morphological appearance is not sensitive enough to be used as the sole criterion for assessing embryo development.

80 citations


Cited by
More filters
Journal ArticleDOI
27 Feb 1997-Nature
TL;DR: The birth of lambs from differentiated fetal and adult cells confirms that differentiation of that cell did not involve the irreversible modification of genetic material required for development to term and reinforces previous speculation that by inducing donor cells to become quiescent it will be possible to obtain normal development from a wide variety of differentiated cells.
Abstract: Fertilization of mammalian eggs is followed by successive cell divisions and progressive differentiation, first into the early embryo and subsequently into all of the cell types that make up the adult animal. Transfer of a single nucleus at a specific stage of development, to an enucleated unfertilized egg, provided an opportunity to investigate whether cellular differentiation to that stage involved irreversible genetic modification. The first offspring to develop from a differentiated cell were born after nuclear transfer from an embryo-derived cell line that had been induced to become quiescent. Using the same procedure, we now report the birth of live lambs from three new cell populations established from adult mammary gland, fetus and embryo. The fact that a lamb was derived from an adult cell confirms that differentiation of that cell did not involve the irreversible modification of genetic material required for development to term. The birth of lambs from differentiated fetal and adult cells also reinforces previous speculation that by inducing donor cells to become quiescent it will be possible to obtain normal development from a wide variety of differentiated cells.

4,721 citations

Journal ArticleDOI
TL;DR: This review discusses the major themes of NH 4 + toxicity, including the occurrence ofNH 4 + in the biosphere, response differences to NH 4+ nutrition among wild and domesticated species, symptoms and proposed mechanisms underlying toxicity, and means by which it can be alleviated.

1,488 citations

Journal ArticleDOI
TL;DR: It is now common to add antioxidant compounds to culture media, but maintaining the pro-oxidant-antioxidant equilibrium in embryos through such supplementation is a complex problem.
Abstract: Oxidative stress is involved in the aetiology of defective embryo development. Reactive oxygen species (ROS) may originate from embryo metabolism and/or embryo surroundings. Embryo metabolism generates ROS via several enzymatic mechanisms. The relative contribution of each source seems different depending on the species, the stage of development, and the culture conditions. Several exogenous factors and culture conditions can enhance the production of ROS by embryos. ROS can alter most types of cellular molecules, and also induce development block and retardation. Multiple mechanisms of embryo protection against ROS exist, and these have complementary actions. External protection, present in follicular and tubal fluids, mainly comprises non-enzymatic antioxidants such as hypotaurine, taurine and ascorbic acid. Internal protection mainly comprises antioxidant enzymes: superoxide dismutase, glutathione peroxidase and gamma-glutamylcysteine synthetase. Transcripts encoding for these enzymes are present in the oocyte, embryo and oviduct. It may be important that these transcripts are stored during oocyte maturation in order to allow the embryo to acquire the aptitude to develop. It is now common to add antioxidant compounds to culture media. Nevertheless, maintaining the pro-oxidant-antioxidant equilibrium in embryos through such supplementation is a complex problem. Further studies are necessary to limit oxidative stress during embryo culture.

1,198 citations

Journal ArticleDOI
TL;DR: Four different situations have been identified that result in the large offspring syndrome: in vitro embryo culture, asynchronous embryo transfer into an advanced uterine environment, nuclear transfer and maternal exposure to excessively high urea diets.
Abstract: Bovine and ovine embryos exposed to a variety of unusual environments prior to the blastocyst stage have resulted in the development of unusually large offspring which can also exhibit a number of organ defects. In these animals, the increased incidence of difficult parturition and of fetal and neonatal losses has limited the large-scale use of in vitro embryo production technologies commonly used in humans and other species. Four different situations have been identified that result in the syndrome: in vitro embryo culture, asynchronous embryo transfer into an advanced uterine environment, nuclear transfer and maternal exposure to excessively high urea diets. However, programming of the syndrome by all of these situations is unpredictable and not all of the symptoms described have been observed universally. Neither the environmental factors inducing the large offspring syndrome nor the mechanisms of perturbation occurring in the early embryo and manifesting themselves in the fetus have been identified.

912 citations

Journal ArticleDOI
TL;DR: Adult somatic cell nuclear transfer was used to determine the totipotent potential of cultured mural granulosa cells, obtained from a Friesian dairy cow of high genetic merit, and DNA analyses confirmed that the calves are all genetically identical to the donor cow.
Abstract: Adult somatic cell nuclear transfer was used to determine the totipotent potential of cultured mural granulosa cells, obtained from a Friesian dairy cow of high genetic merit. Nuclei were exposed to oocyte cytoplasm for prolonged periods by electrically fusing quiescent cultured cells to enucleated metaphase II cytoplasts 4-6 h before activation (fusion before activation [FBA] treatment). Additionally, some first-generation morulae were recloned by fusing blastomeres to S-phase cytoplasts. A significantly higher proportion of fused embryos developed in vitro to grade 1-2 blastocysts on Day 7 with FBA (27.5 +/- 2.5%) than with recloning (13.0 +/- 3.6%; p < 0. 05). After the transfer of 100 blastocysts from the FBA treatment, survival rates on Days 60, 100, 180, and term were 45%, 21%, 17%, and 10%, respectively. Ten heifer calves were delivered by elective cesarean section; all have survived. After the transfer of 16 recloned blastocysts, embryo survival on Day 60 was 38%; however, no fetuses survived to Day 100. DNA analyses confirmed that the calves are all genetically identical to the donor cow. It is suggested that the losses throughout gestation may in part be due to placental dysfunction at specific stages. The next advance in this technology will be to introduce specific genetic modifications of biomedical or agricultural interest.

773 citations