scispace - formally typeset
Search or ask a question
Author

P A Dinh

Bio: P A Dinh is an academic researcher. The author has contributed to research in topics: MDA-MB-468 & Vanillic acid. The author has an hindex of 1, co-authored 1 publications receiving 391 citations.
Topics: MDA-MB-468, Vanillic acid, Bran, Caffeic acid, Tricin

Papers
More filters
Journal Article
TL;DR: Brown rice and bran contain compounds with putative cancer chemopreventive properties and these phenols are present at much lower levels in white than in brown rice, suggesting the consumption of rice bran or brown rice instead of milled white rice may be advantageous with respect to cancer prevention.
Abstract: Rice is a staple diet in Asia, where the incidence of breast and colon cancer is markedly below that in the Western world. We investigated potential colon and breast tumor-suppressive properties of rice, testing the hypothesis that rice contains phenols that interfere with the proliferation or colony-forming ability of breast or colon cells. Brown rice, its white milled counterpart, and bran from brown rice were boiled and extracted with ethyl acetate. The extracts were analyzed by high pressure liquid chromatography-mass spectrometry. Eight phenols, protocatechuic acid, p-coumaric acid, caffeic acid, ferulic acid, sinapic acid, vanillic acid, methoxycinnamic acid, and tricin, were identified in the extracts of bran and intact brown rice. These extracts were separated into nine fractions by column chromatography. The effect of bran extract and its fractions at 100 microg/ml on cell viability and colony-forming ability of human-derived breast and colon cell lines was assessed. Bran extract decreased numbers of viable MDA MB 468 and HBL 100 breast cells and colon-derived SW 480 and human colonic epithelial cells as judged by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4 -sulfophenyl)-2H-tetrazolium assay. It also reduced colony formation of SW 480 colon and MDA MB 468 breast cells. Of the eight phenols identified in the brown rice bran, when applied at 50 microM, caffeic acid decreased numbers of all cell types except HBL 100. Tricin, ferulic acid, and methoxycinnamic acid interfered with cell viability in one or more cell lines. Tricin (50 microM) and the other phenols (200 microM) inhibited colony formation of SW 480 cells. Clonogenicity of MDA MB 468 cells was inhibited by caffeic acid, ferulic acid, and tricin (50 microM). Tricin was the most potent anticlonogenic of the compounds with IC50s of 16 microM in the SW 480 colon cells and 0.6 microM in the MDA MB 468 breast cells. The results suggest that: (a) brown rice and bran contain compounds with putative cancer chemopreventive properties; (b) certain phenols contained in brown rice bran, e.g., tricin, may be associated with this activity; and (c) these phenols are present at much lower levels in white than in brown rice. Thus, the consumption of rice bran or brown rice instead of milled white rice may be advantageous with respect to cancer prevention.

412 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: FA exhibits wide variety of biological activities such as antioxidant, antiinflammatory, antimicrobial, antiallergic, hepatoprotective, anticarcinogenic, antithrombotic, increase sperm viability, antiviral and vasodilatory actions, metal chelation, modulation of enzyme activity, activation of transcriptional factors, gene expression and signal transduction.

633 citations

Journal ArticleDOI
TL;DR: This work aims to review the pharmacological effects of PCA molecules in humans and the structural aspects that contribute to these effects.
Abstract: Flavonoids and polyphenols are heterocyclic molecules that have been associated with beneficial effects on human health, such as reducing the risk of various diseases like cancer, diabetes, and cardiovascular and brain diseases. Protocatechuic acid (PCA) is a type of widely distributed naturally occurring phenolic acid. PCA has structural similarity with gallic acid, caffeic acid, vanillic acid, and syringic acid which are well-known antioxidant compounds. More than 500 plants contain PCA as active constituents imparting various pharmacological activity and these effects are due to their antioxidant activities, along with other possible mechanisms, such as anti-inflammatory properties and interaction with several enzymes. Over the past two decades, there have been an increasing number of publications on polyphenols and flavonoids, which demonstrate the importance of understanding the chemistry behind the antioxidant activities of both natural and synthesized compounds, considering the benefits from their dietary ingestion as well as pharmacological use. This work aims to review the pharmacological effects of PCA molecules in humans and the structural aspects that contribute to these effects.

481 citations

Journal ArticleDOI
TL;DR: It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain, and on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice.
Abstract: Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice.

468 citations

Journal ArticleDOI
TL;DR: The results demonstrated that the content of insoluble phenolic compounds was significantly higher than that of soluble phenolics in rice, whereas almost all compounds identified in germinated brown rice and brown rice were more abundant than those in white rice.
Abstract: Two hydroxycinnamate sucrose esters, 6‘-O-(E)-feruloylsucrose and 6‘-O-(E)-sinapoylsucrose, were isolated from methanol extracts of rice bran. Soluble and insoluble phenolic compounds as well as 6‘-O-(E)-feruloylsucrose and 6‘-O-(E)-sinapoylsucrose from white rice, brown rice, and germinated brown rice were analyzed using HPLC. The results demonstrated that the content of insoluble phenolic compounds was significantly higher than that of soluble phenolics in rice, whereas almost all compounds identified in germinated brown rice and brown rice were more abundant than those in white rice. 6‘-O-(E)-Feruloylsucrose (1.09 mg/100 g of flour) and 6‘-O-(E)-sinapoylsucrose (0.41 mg/100 g of flour) were found to be the major soluble phenolic compounds in brown rice. During germination, an ∼70% decrease was observed in the content of the two hydroxycinnamate sucrose esters, whereas free phenolic acid content increased significantly; the ferulic acid content of brown rice (0.32 mg/100 g of flour) increased to 0.48 mg...

429 citations