scispace - formally typeset
Search or ask a question
Author

P. A. Lee

Bio: P. A. Lee is an academic researcher from Bell Labs. The author has contributed to research in topics: Surface-extended X-ray absorption fine structure. The author has an hindex of 1, co-authored 1 publications receiving 1469 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the development of extended x-ray absorption fine structure (EXAFS) within the last decade and discuss selected examples of applications of EXAFS chosen to illustrate both the strength and limitations of this structural tool.
Abstract: The authors review the development of extended x-ray absorption fine structure (EXAFS) within the last decade. Advances in experimental techniques have been largely stimulated by the availability of synchrotron radiation. The theory of EXAFS has also matured to the point where quantitative comparison with experiments can be made. The authors review in some detail the analysis of EXAFS data, starting from the treatment of raw data to the extraction of distances and amplitude information, and they also discuss selected examples of applications of EXAFS chosen to illustrate both the strength and limitations of EXAFS as a structural tool.

1,507 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A large amount of work world wide has been directed towards obtaining an understanding of the fundamental characteristics of porous Si as mentioned in this paper, and the key importance of crystalline Si nanostructures in determining the behaviour of porous si is highlighted.
Abstract: A large amount of work world-wide has been directed towards obtaining an understanding of the fundamental characteristics of porous Si. Much progress has been made following the demonstration in 1990 that highly porous material could emit very efficient visible photoluminescence at room temperature. Since that time, all features of the structural, optical and electronic properties of the material have been subjected to in-depth scrutiny. It is the purpose of the present review to survey the work which has been carried out and to detail the level of understanding which has been attained. The key importance of crystalline Si nanostructures in determining the behaviour of porous Si is highlighted. The fabrication of solid-state electroluminescent devices is a prominent goal of many studies and the impressive progress in this area is described.

2,371 citations

Journal ArticleDOI
TL;DR: The theoretical modeling of point defects in crystalline materials by means of electronic-structure calculations, with an emphasis on approaches based on density functional theory (DFT), is reviewed in this paper.
Abstract: Point defects and impurities strongly affect the physical properties of materials and have a decisive impact on their performance in applications. First-principles calculations have emerged as a powerful approach that complements experiments and can serve as a predictive tool in the identification and characterization of defects. The theoretical modeling of point defects in crystalline materials by means of electronic-structure calculations, with an emphasis on approaches based on density functional theory (DFT), is reviewed. A general thermodynamic formalism is laid down to investigate the physical properties of point defects independent of the materials class (semiconductors, insulators, and metals), indicating how the relevant thermodynamic quantities, such as formation energy, entropy, and excess volume, can be obtained from electronic structure calculations. Practical aspects such as the supercell approach and efficient strategies to extrapolate to the isolated-defect or dilute limit are discussed. Recent advances in tractable approximations to the exchange-correlation functional ($\mathrm{DFT}+U$, hybrid functionals) and approaches beyond DFT are highlighted. These advances have largely removed the long-standing uncertainty of defect formation energies in semiconductors and insulators due to the failure of standard DFT to reproduce band gaps. Two case studies illustrate how such calculations provide new insight into the physics and role of point defects in real materials.

1,846 citations

Journal ArticleDOI
TL;DR: (Article begins on next page)
Abstract: (Article begins on next page) Anyone can freely access the full text of works made available as \"Open Access\". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. Availability: This is the author's manuscript

528 citations

Journal ArticleDOI
Jingguang G. Chen1
TL;DR: In this article, the authors review applications of the near-edge X-ray absorption fine structure (NEXAFS) technique in the investigations of electronic and structural properties of transition metal compounds.

518 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed two methods for obtaining the atomic-like background for the x-ray absorption fine structure (XAFS): the methods of smoothing spline and of Bayesian smoothing.
Abstract: We propose two methods for obtaining the atomic-like background for the x-ray absorption fine structure (XAFS): the methods of smoothing spline and of Bayesian smoothing. Both are capable of using the prior information, calculated or experimental, about the background. The XAFS signals obtained by these techniques are shown to be significantly corrected in comparison with standard methods. The method of Bayesian smoothing is the only method that gives the errors of approximation of the atomic-like background by an artificial smooth function. These errors are shown to be the main source of the uncertainty of the XAFS function.

460 citations