scispace - formally typeset
Search or ask a question
Author

P. Blüm

Other affiliations: University of Mainz
Bio: P. Blüm is an academic researcher from Karlsruhe Institute of Technology. The author has contributed to research in topics: Annihilation & Antiproton. The author has an hindex of 37, co-authored 123 publications receiving 11813 citations. Previous affiliations of P. Blüm include University of Mainz.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, results from searches for the standard model Higgs boson in proton-proton collisions at 7 and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.8 standard deviations.

8,857 citations

Journal ArticleDOI
TL;DR: With antiprotons stopped in liquid deuterium, the p n annihilation channel π−π0η was studied using a final sample of 52−576 events obtained for a spectator proton momentum q q quantum numbers IG=1−, JPC=1++ as mentioned in this paper.

116 citations

Journal ArticleDOI
TL;DR: In this article, the performance of high-level trigger, identification, and reconstruction algorithms for a broad range of muon momenta was evaluated using a large data sample of cosmic-ray muons recorded in 2008.
Abstract: The performance of muon reconstruction in CMS is evaluated using a large data sample of cosmic-ray muons recorded in 2008. Efficiencies of various high-level trigger, identification, and reconstruction algorithms have been measured for a broad range of muon momenta, and were found to be in good agreement with expectations from Monte Carlo simulation. The relative momentum resolution for muons crossing the barrel part of the detector is better than 1% at 10 GeV/c and is about 8% at 500 GeV/c, the latter being only a factor of two worse than expected with ideal alignment conditions. Muon charge misassignment ranges from less than 0.01% at 10 GeV/c to about 1% at 500 GeV/c.

115 citations

Journal ArticleDOI
TL;DR: In this article, a simultaneous analysis of data on pp → ππ0π0 and pp → ηηπ0 at rest, two I = 0, JPC = 0++ resonances are identified above 1 GeV.

112 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations

Journal ArticleDOI
TL;DR: Delphes as mentioned in this paper is a fast-simulation of a multipurpose detector for phenomenological studies, including a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system.
Abstract: The version 3.0 of the Delphes fast-simulation is presented. The goal of Delphes is to allow the simulation of a multipurpose detector for phenomenological studies. The simulation includes a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system. Physics objects that can be used for data analysis are then reconstructed from the simulated detector response. These include tracks and calorimeter deposits and high level objects such as isolated electrons, jets, taus, and missing energy. The new modular approach allows for greater flexibility in the design of the simulation and reconstruction sequence. New features such as the particle-flow reconstruction approach, crucial in the first years of the LHC, and pile-up simulation and mitigation, which is needed for the simulation of the LHC detectors in the near future, have also been implemented. The Delphes framework is not meant to be used for advanced detector studies, for which more accurate tools are needed. Although some aspects of Delphes are hadron collider specific, it is flexible enough to be adapted to the needs of electron-positron collider experiments.

2,692 citations

Journal ArticleDOI
John Allison1, K. Amako2, John Apostolakis3, Pedro Arce4, Makoto Asai5, Tsukasa Aso6, Enrico Bagli, Alexander Bagulya7, Sw. Banerjee8, G. Barrand9, B. R. Beck10, Alexey Bogdanov11, D. Brandt, Jeremy M. C. Brown12, Helmut Burkhardt3, Ph Canal8, D. Cano-Ott4, Stephane Chauvie, Kyung-Suk Cho13, G.A.P. Cirrone14, Gene Cooperman15, M. A. Cortés-Giraldo16, G. Cosmo3, Giacomo Cuttone14, G.O. Depaola17, Laurent Desorgher, X. Dong15, Andrea Dotti5, Victor Daniel Elvira8, Gunter Folger3, Ziad Francis18, A. Galoyan19, L. Garnier9, M. Gayer3, K. Genser8, Vladimir Grichine3, Vladimir Grichine7, Susanna Guatelli20, Susanna Guatelli21, Paul Gueye22, P. Gumplinger23, Alexander Howard24, Ivana Hřivnáčová9, S. Hwang13, Sebastien Incerti25, Sebastien Incerti26, A. Ivanchenko3, Vladimir Ivanchenko3, F.W. Jones23, S. Y. Jun8, Pekka Kaitaniemi27, Nicolas A. Karakatsanis28, Nicolas A. Karakatsanis29, M. Karamitrosi30, M.H. Kelsey5, Akinori Kimura31, Tatsumi Koi5, Hisaya Kurashige32, A. Lechner3, S. B. Lee33, Francesco Longo34, M. Maire, Davide Mancusi, A. Mantero, E. Mendoza4, B. Morgan35, K. Murakami2, T. Nikitina3, Luciano Pandola14, P. Paprocki3, J Perl5, Ivan Petrović36, Maria Grazia Pia, W. Pokorski3, J. M. Quesada16, M. Raine, Maria A.M. Reis37, Alberto Ribon3, A. Ristic Fira36, Francesco Romano14, Giorgio Ivan Russo14, Giovanni Santin38, Takashi Sasaki2, D. Sawkey39, J. I. Shin33, Igor Strakovsky40, A. Taborda37, Satoshi Tanaka41, B. Tome, Toshiyuki Toshito, H.N. Tran42, Pete Truscott, L. Urbán, V. V. Uzhinsky19, Jerome Verbeke10, M. Verderi43, B. Wendt44, H. Wenzel8, D. H. Wright5, Douglas Wright10, T. Yamashita, J. Yarba8, H. Yoshida45 
TL;DR: Geant4 as discussed by the authors is a software toolkit for the simulation of the passage of particles through matter, which is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection.
Abstract: Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Over the past several years, major changes have been made to the toolkit in order to accommodate the needs of these user communities, and to efficiently exploit the growth of computing power made available by advances in technology. The adaptation of Geant4 to multithreading, advances in physics, detector modeling and visualization, extensions to the toolkit, including biasing and reverse Monte Carlo, and tools for physics and release validation are discussed here.

2,260 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations