scispace - formally typeset
Search or ask a question
Author

P. C. Sadhukhan

Bio: P. C. Sadhukhan is an academic researcher from University of Calcutta. The author has contributed to research in topics: Mercury(II) reductase & Mercury (element). The author has an hindex of 6, co-authored 8 publications receiving 117 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Cell-free extracts prepared from narrow-spectrum Hg-resistant bacterial strains induced by HgCl(2) exhibited Hg(+2)-dependent NADPH oxidation, indicating the presence of only mercuric reductase enzyme.
Abstract: Mercury-resistant bacteria belonging to the genera Bacillus, Escherichia, Klebsiella, Micrococcus, Pseudomonas, Salmonella, Sarcina, Shigella, Staphylococcus and Streptococcus were isolated from gills and guts of fresh water fish collected from wetland fisheries around Calcutta, India, contaminated with mercury compounds. The total number of bacteria, as well as Hg-resistant bacteria, were always higher in guts than gills. Bottom-dwelling fish contained higher number of bacteria, including Hg-resistant bacteria, than surface and middle water dwelling fish. They belonged either to narrow-spectrum or to broad-spectrum Hg-resistant groups and they also possessed other heavy metal and antibiotic resistant properties. In the presence of toxic levels of HgCl2, phenylmercuric acetate (PMA) and methylmercuric chloride (MMC), the lag in growth of the bacterial strains gradually increased with increasing concentration of Hg-compounds. Narrow-spectrum Hg-resistant bacterial strains volatilized only HgCl2 from the liquid medium in the range of 64–89%, whereas the broad-spectrum group exhibited a high level of HgCl2 (80–94%), PMA (72–84%) and MMC (64–80%) volatilizing capacity with inducible mercuric reductase and organomercurial lyase enzyme activities in their cell-free extracts. Cell-free extracts prepared from narrow-spectrum Hg-resistant bacterial strains induced by HgCl2 exhibited Hg+2-dependent NADPH oxidation, indicating the presence of only mercuric reductase enzyme.

33 citations

Journal Article
TL;DR: Two azoreductases (I and II) were purified to homogeneity from extracts of E. coli K12 and used Ponceau SX, Tartrazine, Amaranth and Orange II as substrates.
Abstract: Two azoreductases (I and II) were purified to homogeneity from extracts of E. coli K12. Azoreductase I was a dimer of two identical subunits of molecular weight 28000 whereas azoreductase II was a monomer of 12,000 molecular weight. Both NADH and NADPH functioned as electron donors for the azoreductases. Azoreductase I and II used Ponceau SX, Tartrazine, Amaranth and Orange II as substrates. Ponceau SX was the best substrate for both the enzymes. However, azoreductase II utilized tartrazine, amaranth and orange II less efficiently than azoreductase I.

31 citations

Journal ArticleDOI
S. Ghosh1, P. C. Sadhukhan1, Debidas Ghosh1, J. Chaudhuri1, A. Mandal1 
TL;DR: It is reported that resting cells of mercury-resistant bacteria survive in a buffer system for several hours, synthesize inducible mercury-degrading enzymes and volatilize mercury from a mercury-containing buffer system.
Abstract: The mercuric ion reduction system encoded by the Hg2+ inducible mer operon confers bacterial resistance to mercuric ion. The mer A gene product which is a FAD-containing enzyme catalyzes the reduction of Hg2+ to volatile elemental mercury with the help of intracellular thiols and NADPH as a cofactor (Schottel 1974; Summers and Silver 1978; Fox and Walsh 1982; Misra 1992). Our earlier studies have shown that growing cells of different mercury-resistant bacteria reduce Hg2+ compounds to Hg(O) (Ray et al. 1989; Pahan et al. 1990a; Gachhui et al. 1989). We have also shown the effect of thiol compounds and flavins on mercury-degrading enzyme activities in mercury-resistant bacteria (Pahan et al. 1990b). Here we report that resting cells of mercury-resistant bacteria survive in a buffer system for several hours, synthesize inducible mercury-degrading enzymes and volatilize mercury from a mercury-containing buffer system. We know of no information regarding studies of mercury-degrading enzymes in resting mercury-resistant bacterial cells.

16 citations

Journal ArticleDOI
S. Ghosh1, P. C. Sadhukhan1, J. Chaudhuri1, Debasis Ghosh1, A. Mandal1 
TL;DR: Titration with 5,5′‐dithiobis (2‐nitrobenzoate) demonstrated that two enzyme–SH groups become kinetically accessible on reduction with NADPH, and showed a single band on polyacrylamide gel electrophoresis of the freshly prepared enzyme.
Abstract: Mercury resistance determinants in bacteria are often plasmid-borne or transposon-mediated. Mercuric reductase, one of the proteins encoded by the mercury resistance operon, catalyses a unique reaction in which mercuric ions, Hg (II), are reduced to mercury metal Hg(O) using NADPH as a source of reducing power. Mercuric reductase was purified from Azotobacter chroococcum SS2 using Red A dye matrix affinity chromatography. Freshly purified preparations of the enzyme showed a single band on polyacrylamide gel electrophoresis under non-denaturing conditions. After SDS-polyacrylamide gel electrophoresis of the freshly prepared enzyme, two protein bands, a major and a minor one, were observed with molecular weight 69 000 and 54 000, respectively. The molecular weight of the native enzyme as determined by gel filtration in Sephacryl S-300 was 142 000. The Km of Hg2+-reductase for HgCl2 was 11·11 μmol l−1. Titration with 5,5′-dithiobis (2-nitrobenzoate) demonstrated that two enzyme–SH groups become kinetically accessible on reduction with NADPH.

15 citations

Journal ArticleDOI
S. Ghosh1, P. C. Sadhukhan1, J. Chaudhuri1, Debidas Ghosh1, A. Mandal1 
TL;DR: Immobilized mercury-resistant bacterial cells of Azotobacter chroococcum could effectively volatilize mercury from mercury-containing buffer and detoxify mercury compounds and the storage stability of immobilized cells was much better than that of the native cells.
Abstract: Highly toxic mercury compounds may come into the environment through the use of mercury compounds as disinfectants for hospital and household purposes, Hg catalyst in industries, burning of coal and petroleum products, mercury-based pesticides and fungicides used in agriculture, and seed dressings. Toxic effects of mercury can be counteracted by microbial cells through the enzymes mercuric reductase and organomercurial lyase. Immobilized mercury-resistant bacterial cells of Azotobacter chroococcum could effectively volatilize mercury from mercury-containing buffer and detoxify mercury compounds. Moreover, the efficiency of mercury volatilization was much greater than with the native cells, as immobilized cells can be reused. Immobilized cells continuously volatilized mercury from mercury-containing buffer after four consecutive 24 h cycles. The storage stability of immobilized cells was much better than that of the native cells.

13 citations


Cited by
More filters
Journal ArticleDOI
Francois Joel Gatesoupe1
TL;DR: The most promising prospects are sketched out, but considerable efforts of research will be necessary to develop the applications to aquaculture.
Abstract: The research of probiotics for aquatic animals is increasing with the demand for environment-friendly aquaculture. The probiotics were defined as live microbial feed supplements that improve health of man and terrestrial livestock. The gastrointestinal microbiota of fish and shellfish are peculiarly dependent on the external environment, due to the water flow passing through the digestive tract. Most bacterial cells are transient in the gut, with continuous intrusion of microbes coming from water and food. Some commercial products are referred to as probiotics, though they were designed to treat the rearing medium, not to supplement the diet. This extension of the probiotic concept is pertinent when the administered microbes survive in the gastrointestinal tract. Otherwise, more general terms are suggested, like biocontrol when the treatment is antagonistic to pathogens, or bioremediation when water quality is improved. However, the first probiotics tested in fish were commercial preparations devised for land animals. Though some effects were observed with such preparations, the survival of these bacteria was uncertain in aquatic environment. Most attempts to propose probiotics have been undertaken by isolating and selecting strains from aquatic environment. These microbes were Vibrionaceae, pseudomonads, lactic acid bacteria, Bacillus spp. and yeasts. Three main characteristics have been searched in microbes as candidates to improve the health of their host. (1) The antagonism to pathogens was shown in vitro in most cases. (2) The colonization potential of some candidate probionts was also studied. (3) Challenge tests confirmed that some strains could increase the resistance to disease of their host. Many other beneficial effects may be expected from probiotics, e.g., competition with pathogens for nutrients or for adhesion sites, and stimulation of the immune system. The most promising prospects are sketched out, but considerable efforts of research will be necessary to develop the applications to aquaculture.

1,182 citations

Journal ArticleDOI
TL;DR: Several (laboratory-scale) continuous anaerobic/aerobic processes for the treatment of wastewaters containing azo dyes have recently been described.
Abstract: Azo dyes are the most important group of synthetic colorants. They are generally considered as xenobiotic compounds that are very recalcitrant against biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several microorganisms are able, under certain environmental conditions, to transform azo dyes to non-colored products or even to completely mineralize them. Thus, various lignolytic fungi were shown to decolorize azo dyes using ligninases, manganese peroxidases or laccases. For some model dyes, the degradative pathways have been investigated and a true mineralization to carbon dioxide has been shown. The bacterial metabolism of azo dyes is initiated in most cases by a reductive cleavage of the azo bond, which results in the formation of (usually colorless) amines. These reductive processes have been described for some aerobic bacteria, which can grow with (rather simple) azo compounds. These specifically adapted microorganisms synthesize true azoreductases, which reductively cleave the azo group in the presence of molecular oxygen. Much more common is the reductive cleavage of azo dyes under anaerobic conditions. These reactions usually occur with rather low specific activities but are extremely unspecific with regard to the organisms involved and the dyes converted. In these unspecific anaerobic processes, low-molecular weight redox mediators (e.g. flavins or quinones) which are enzymatically reduced by the cells (or chemically by bulk reductants in the environment) are very often involved. These reduced mediator compounds reduce the azo group in a purely chemical reaction. The (sulfonated) amines that are formed in the course of these reactions may be degraded aerobically. Therefore, several (laboratory-scale) continuous anaerobic/aerobic processes for the treatment of wastewaters containing azo dyes have recently been described.

1,119 citations

Journal ArticleDOI
TL;DR: This review provides a summary of the use of probiotics for prevention of bacterial diseases in aquaculture, with a critical evaluation of results obtained to date.
Abstract: The increase of productivity in aquaculture has been accompanied by ecological impacts including emergence of a large variety of pathogens and bacterial resistance. These impacts are in part due to the indiscriminate use of chemotherapeutic agents as a result of management practices in production cycles. This review provides a summary of the use of probiotics for prevention of bacterial diseases in aquaculture, with a critical evaluation of results obtained to date.

1,042 citations

Journal ArticleDOI
TL;DR: This review summarizes nickel homeostasis processes used by microorganisms and highlights in vivo and in vitro effects of exposure to elevated concentrations of nickel, proposing four mechanisms of nickel toxicity.
Abstract: Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological concern. To date, the mechanisms of nickel toxicity in microorganisms and higher eukaryotes are poorly understood. In this review, we summarize nickel homeostasis processes used by microorganisms and highlight in vivo and in vitro effects of exposure to elevated concentrations of nickel. On the basis of this evidence we propose four mechanisms of nickel toxicity: (1) nickel replaces the essential metal of metalloproteins, (2) nickel binds to catalytic residues of non-metalloenzymes; (3) nickel binds outside the catalytic site of an enzyme to inhibit allosterically and (4) nickel indirectly causes oxidative stress.

255 citations

Journal ArticleDOI
TL;DR: Structures and carcinogenicity of azo colorants, protein structure, enzymatic function, and substrate specificity, as well as application of the azo dyes and azoreductases will be discussed.
Abstract: Azo dyes, which are characterized by one or more azo bonds, are a predominant class of colorants used in tattooing, cosmetics, foods, and consumer products. These dyes are mainly metabolized by bacteria to colorless aromatic amines, some of which are carcinogenic, by azoreductases that catalyze a NAD(P)H-dependent reduction. The resulting amines are further degraded aerobically by bacteria. Some bacteria have the ability to degrade azo dyes both aerobically and anaerobically. Plant-degrading white rot fungi can break down azo dyes by utilizing a number of oxidases and peroxidases as well. In yeast, a ferric reductase system participates in the extracellular reduction of azo dyes. Recently, two types of azoreductases have been discovered in bacteria. The first class of azoreductases is monomeric flavin-free enzymes containing a putative NAD(P)H binding motif at their N-termini; the second class is polymeric flavin dependent enzymes which are studied more extensively. Azoreductases from bacteria represent novel families of enzymes with little similarity to other reductases. Dissociation and reconstitution of the flavin dependent azoreductases demonstrate that the non-covalent bound flavin prosthetic group is required for the enzymatic functions. In this review, structures and carcinogenicity of azo colorants, protein structure, enzymatic function, and substrate specificity, as well as application of the azo dyes and azoreductases will be discussed.

226 citations