scispace - formally typeset
Search or ask a question
Author

P. Cusmin

Bio: P. Cusmin is an academic researcher from Polytechnic University of Catalonia. The author has contributed to research in topics: Liquid crystal & Phase transition. The author has an hindex of 4, co-authored 6 publications receiving 94 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is proved that both phase transitions are weakly first order, displaying a nearly tricritical behavior, and the width of metastable regions seems to be dependent on the physical magnitude, although specific heat and volumetric determinations allow for comparable results.
Abstract: Different kind of measurements were performed on the liquid crystal nonyloxycyanobiphenyl (9OCB) to carry out a study of the molecular dynamics in the smectic A (SmA), nematic (N), and isotropic (I) phases as well as an exhaustive analysis of both the SmA-to-N and N-to-I phase transitions. For the dynamic study, broadband dielectric spectroscopy (102 to 1.8 × 109 Hz) was used. Two orientations (parallel and perpendicular) of the molecular director with regard to the probing electric field were investigated. From this study, the static dielectric permittivity was obtained in both alignments and, in addition, the molecular motions that contribute to each one were discussed. The static dielectric data together with specific heat and volumetric determinations were analyzed, proving that both phase transitions are weakly first order, displaying a nearly tricritical behavior. However, the width of metastable regions seems to be dependent on the physical magnitude, although specific heat and volumetric determina...

41 citations

Journal ArticleDOI
TL;DR: The Smectic mesophase of the 8OCB + 10OCB mixtures has been unmistakably characterized through optical measurements as smectic A for the whole composition range.
Abstract: The two-component system octyloxycyanobiphenyl (8OCB) + decyloxycyanobiphenil (10OCB) has been studied by means of modulated differential scanning calorimetry as well as optical microscopy. The general trends of the phase diagram are similar to the two-component system octylcyanobiphenyl (8CB) + decylcyanobiphenil (10CB), previously published. Evidence for the existence of a TCP have been reported, the molar composition being about 0.33 of 10OCB. Additionally, the smectic mesophase of the 8OCB + 10OCB mixtures has been unmistakably characterized through optical measurements as smectic A for the whole composition range.

19 citations

Journal ArticleDOI
TL;DR: It was experimentally established that the 7OCB+9OCB two-component system exhibits a monotropic re-entrant nematic behavior.
Abstract: The metastable phase diagram of the two-component system heptyloxycyanobiphenyl (7OCB)+nonyloxycyanobiphenyl (9OCB) was determined by means of modulated differential scanning calorimetry (MDSC) and optical microscopy measurements. It was experimentally established that the 7OCB+9OCB two-component system exhibits a monotropic re-entrant nematic behavior. A complete quantitative thermodynamic analysis, through Oonk's equal G analysis, was performed, allowing for the calculation of the monotropic re-entrant behavior and the prediction of two tricritical points, one of them experimentally accessible for the SmAd-to-N transition and the other non-experimentally accessible for the RN-to-SmAd transition. From specific-heat measurements, latent heats were obtained for those mixtures displaying a first-order SmAd-to-N transition. Additionally, for some mixtures, the specific-heat critical exponents (α), through the second-order SmAd-to-N transition, were obtained. Both batches of data enable us to access to the ex...

17 citations

Journal ArticleDOI
TL;DR: An exhaustive analysis of the critical behavior of the nematic to isotropic (N-to-I) phase transition on the liquid crystal hexyloxycyanobiphenyl (6OCB) has been performed and some discrepancies have been observed for the dielectric data in relation to such a scaling relationship.
Abstract: An exhaustive analysis of the critical behavior of the nematic to isotropic (N-to-I) phase transition on the liquid crystal hexyloxycyanobiphenyl (6OCB) has been performed. To do so, the accurate evolution of various physical magnitudes (static dielectric permittivity data together with specific heat and volumetric determinations) around the N-to-I transition has been required. The specific heat data with the isobaric thermal expansion coefficient and the derivative of the static dielectric permittivity with temperature have been proven to be related to each other by a scaling relationship. However, some discrepancies have been observed for the dielectric data in relation to such a scaling relationship and the critical behavior of the N-to-I phase transition. All information has been used to get some insight on the strength of the first-order N-to-I phase transition of the 6OCB in relation to the other counterparts in the nOCB series of compounds.

17 citations

Journal ArticleDOI
TL;DR: In this paper, measurements of pressure, molar volume and specific heat as functions of temperature in the isotropic (I) phase as well as in the smectic A (SmA) and nematic (N) mesophases of some alkyloxycyanobiphenyl compounds were carried out using differential thermal analysis under pressure, densitometry, X-ray powder diffraction and modulated differential scanning calorimetry.
Abstract: Measurements of pressure, molar volume and specific heat as functions of temperature in the isotropic (I) phase as well as in the smectic A (SmA) and nematic (N) mesophases of some alkyloxycyanobiphenyl compounds (nOCB, n = 6–10) were carried out using differential thermal analysis under pressure, densitometry, X‐ray powder diffraction and modulated differential scanning calorimetry. Thermodynamic properties, such as latent heats and volume jumps at the different phase transitions, were determined. The coherence of this whole set of data was tested using pressure–temperature data through the slopes associated to their phase transitions, extrapolated at normal pressure in the light of the Clausius–Clapeyron equation.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is concluded that the low temperature mesophase exhibits the characteristics of a twist-bend nematic phase, and the nematic-to-isotropic phase transition has been exhaustively studied from the accurate evolution of the heat capacity and the static dielectric permittivity data.
Abstract: This paper reports a novel liquid crystal phase having the characteristics of a twist-bend nematic phase formed by a non-symmetric ether-linked liquid crystal dimer. The dimer 1''-(2',4-difluorobiphenyl-4'-yloxy)-9''-(4-cyanobiphenyl-4'-yloxy) nonane (FFO9OCB) exhibits two liquid-crystalline phases on cooling at a sufficiently high rate from the isotropic phase. The high temperature mesophase has been reported in the literature as nematic and confirmed in this study. The other mesophase is metastable and can be supercooled giving rise to a glassy state. Its identification and characterization are based on optical textures, broadband dielectric spectroscopy, calorimetry, measurements of both splay and bend elastic constants in the nematic phase and miscibility studies. It is concluded that the low temperature mesophase exhibits the characteristics of a twist-bend nematic phase. Dielectric measurements enable us to obtain the static permittivity and information about the molecular dynamics in the isotropic phase, in the nematic mesophase and across the isotropic-to-nematic phase transition. Two orientations, parallel and perpendicular to the director, have been investigated. In the high temperature nematic mesophase, the dielectric anisotropy is found to be positive. Measurements of the parallel component of the dielectric permittivity are well-explained by the molecular theory of dielectric relaxation in nematic dimers (M. Stocchero, A. Ferrarini, G. J. Moro, D. A. Dunmur and G. R. Luckhurst, J. Chem. Phys., 2004, 121, 8079). The dimer is modelled as a mixture of cis and trans conformers and the model allows an estimate of their relative populations at each temperature. The nematic-to-isotropic phase transition has been exhaustively studied from the accurate evolution of the heat capacity and the static dielectric permittivity data. It has been concluded that the transition is first order in nature, but close to tricritical. The nature of the nematic-to-the novel liquid crystal phase transition is difficult to analyze to the same extent because of insufficient precision. Only observations at cooling rates of 10 K min(-1) or higher were possible because on heating from the glassy state, the twist-bend nematic mesophase crystallizes at temperatures far below the nematic-nematic phase transition.

75 citations

Journal ArticleDOI
TL;DR: The nematic-to-isotropic phase transition has been exhaustively studied and it has been concluded that the transition is first order in nature and follows the tricritical hypothesis.
Abstract: Broadband dielectric spectroscopy (103 to 1.8 × 109 Hz) and specific heat measurements have been performed on the odd nonsymmetric liquid crystal dimer α-(4-cyanobiphenyl-4′-oxy)-ω-(1-pyreniminebenzylidene-4′-oxy)undecane (CBO11O·Py), as a function of temperature. The mesogenic behavior is restricted to a nematic mesophase which can be supercooled down to its corresponding glassy state if the cooling rate is fast enough (no less than 15 K·min–1). Dielectric measurements enable us to obtain the static permittivity and information about the molecular dynamics in the nematic mesophase as well as in the isotropic phase and across the isotropic-to-nematic phase transition. Two orientations (parallel and perpendicular) of the molecular director with regard to the probe electric field have been investigated. In the nematic mesophase, the dielectric anisotropy is revealed to be positive. Measurements of the parallel component of the dielectric permittivity are well explained by means of the molecular theory of di...

42 citations

Journal ArticleDOI
TL;DR: The phase behavior and dielectric properties of the liquid crystal (LC) 4′-n-octyloxy-4-cyanobiphenyl dispersed with graphene nanoplatelets (GNPs) were reported in this paper.
Abstract: We report on the phase behavior and dielectric properties of the liquid crystal (LC) 4′-n-octyloxy-4-cyanobiphenyl dispersed with graphene nanoplatelets (GNPs). The temperature-dependent dielectric permittivity at 104 Hz and its derivative with respect to the temperature reveal that the incorporation of GNPs in a LC cell leads to the modification of crystalline polymorphism and shift in phase transition temperature owing to the enhanced positional and orientational order. Additionally, the dielectric data between 1 and 103 Hz show that the dopant reduces the ionic concentration and alters the diffusivity in the LC mesophases.

41 citations

Journal ArticleDOI
TL;DR: The isotropic internal field assumption by the Vuks-Chandrasekhar-Madhusudana model is adequate to extract the critical behavior of S(T) from the optical birefringence data, signaling the second-order nature of the N-SmA transition.
Abstract: We report high-sensitivity and high-temperature resolution experimental data for the temperature dependence of the optical birefringence of a nonpolar monolayer smectogen 4-butyloxyphenyl-4'-decyloxybenzoate (10[over ¯].O.4[over ¯]) liquid crystal by using a rotating-analyzer technique. The birefringence data cover nematic and smectic-A phases of the 10[over ¯].O.4[over ¯] compound. The birefringence data are used to probe the temperature behavior of the nematic order parameter S(T) in the vicinity of both the nematic-isotropic (N-I) and the nematic-smectic-A (N-SmA) transitions. For the N-I transition, from the data sufficiently far away from the smectic-A phase, the average value of the critical exponent β describing the limiting behavior of S(T) is found to be 0.2507±0.0010, which is in accordance with the so-called tricritical hypothesis, which predicts β=0.25 and excludes higher theoretical values. The critical behavior of S(T) at the N-I transition is discussed in detail by comparing our results with the latest reports in the literature and we conclude that by comparing with the previously reported results, the isotropic internal field assumption by the Vuks-Chandrasekhar-Madhusudana model is adequate to extract the critical behavior of S(T) from the optical birefringence data. We observe that there is no discontinuous behavior in the optical birefringence, signaling the second-order nature of the N-SmA transition. The effect of the coupling between the nematic and smectic-A order parameters on the optical birefringence near the N-SmA transition is also discussed. In a temperature range of about 4K above and below the N-SmA transition, the pretransitional evidence for the N-SmA coupling have been detected. From the analysis of the optical birefringence data above and below the N-SmA transition by means of various fitting expressions we test the validity of the scaling relation λ=1-α between the critical exponent λ describing the limiting behavior of the nematic order parameter and the specific heat capacity exponent α. We then show that the temperature derivative of the nematic order parameter S(T) near T(NA) exhibits the same power-law divergence as the specific heat capacity with an effective critical exponent of 0.2303±0.0035.

33 citations

Journal ArticleDOI
TL;DR: A self-consistent mean field Landau model is developed using two key order parameters: a symmetric and traceless tensor for the orientational order and a short-range vector field which is orthogonal to the helix axis and rotates around of the heliconical structure with an extremely short periodicity.
Abstract: We report a calorimetric study of a series of mixtures of two twist-bend liquid crystal dimers, the 1′′,7′′-bis(4-cyanobiphenyl)-4′-yl heptane (CB7CB) and 1′′-(2′,4-difluorobiphenyl-4′-yloxy)-9′′-(4-cyanobiphenyl-4′-yloxy) nonane (FFO9OCB), the molecules of which have different effective molecular curvatures. High-resolution heat capacity measurements in the vicinity of the NTB–N phase transition for a selected number of binary mixtures clearly indicate a first order NTB–N phase transition for all the investigated mixtures, the strength of which decreases when the nematic range increases. Published theories predict a second order NTB–N phase transition, but we have developed a self-consistent mean field Landau model using two key order parameters: a symmetric and traceless tensor for the orientational order and a short-range vector field which is orthogonal to the helix axis and rotates around of the heliconical structure with an extremely short periodicity. The theory, in its simplified form, depends on two effective elastic constants and explains satisfactorily our heat capacity measurements and also predicts a first-order NTB–N phase transition. In addition, as a complementary source of experimental measurements, the splay (K1) and bend (K3) elastic constants in the conventional nematic phase for the pure compounds and some selected mixtures have been determined.

33 citations