scispace - formally typeset
Search or ask a question
Author

P.D. Dapkus

Other affiliations: Princeton University
Bio: P.D. Dapkus is an academic researcher from University of Southern California. The author has contributed to research in topics: Quantum well & Semiconductor laser theory. The author has an hindex of 41, co-authored 247 publications receiving 7889 citations. Previous affiliations of P.D. Dapkus include Princeton University.


Papers
More filters
Journal ArticleDOI
11 Jun 1999-Science
TL;DR: A laser cavity formed from a single defect in a two-dimensional photonic crystal is demonstrated and pulsed lasing action has been observed at a wavelength of 1.5 micrometers from optically pumped devices with a substrate temperature of 143 kelvin.
Abstract: A laser cavity formed from a single defect in a two-dimensional photonic crystal is demonstrated. The optical microcavity consists of a half wavelength–thick waveguide for vertical confinement and a two-dimensional photonic crystal mirror for lateral localization. A defect in the photonic crystal is introduced to trap photons inside a volume of 2.5 cubic half-wavelengths, approximately 0.03 cubic micrometers. The laser is fabricated in the indium gallium arsenic phosphide material system, and optical gain is provided by strained quantum wells designed for a peak emission wavelength of 1.55 micrometers at room temperature. Pulsed lasing action has been observed at a wavelength of 1.5 micrometers from optically pumped devices with a substrate temperature of 143 kelvin.

2,310 citations

Journal ArticleDOI
TL;DR: In this paper, the InGaAs single quantum well vertical-cavity surface-emitting laser with an intracavity p-contact fabricated by selective oxidation of AlAs and distributed Bragg reflectors composed of binary materials (AlAs/GaAs).
Abstract: The authors report InGaAs single quantum well vertical-cavity surface-emitting lasers with an intracavity p-contact fabricated by selective oxidation of AlAs and distributed Bragg reflectors composed of binary materials (AlAs/GaAs). Record low threshold currents of 8.7 µA in ~3 µm square devices and 140 µA in 10 µm square devices with maximum output powers over 1.2 mW are achieved.

357 citations

Journal ArticleDOI
TL;DR: In this paper, a hexagonally ordered array of nanometer-scale holes with a density as high as ∼1011/cm2 was created using block copolymer lithography, in which a thin layer of diblock copolymers was used as an etching mask to make dense holes in a 15nm-thick SiNx film.
Abstract: GaAs has been selectively grown in a hexagonally ordered array of nanometer-scale holes with a density as high as ∼1011/cm2 by metalorganic chemical vapor deposition. This array of holes was created using block copolymer lithography, in which a thin layer of diblock copolymer was used as an etching mask to make dense holes in a 15-nm-thick SiNx film. These selectively grown nanoscale features are estimated to be 23 nm in diameter with narrow lateral size and height distributions as characterized by field-emission scanning electron microscopy and tapping mode atomic force microscopy. The narrow size distribution and uniform spatial position of the nanoscale dots we report offer potential advantages over self-assembled dots grown by the Stranski–Krastanow mode.

267 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrated room temperature lasing from optically pumped single defects in a two-dimensional (2D) photonic bandgap (PBG) crystal is demonstrated, where high-Q optical microcavities are formed by etching a triangular array of air holes into a half-wavelength multiquantum-well waveguide.
Abstract: Room temperature lasing from optically pumped single defects in a two-dimensional (2-D) photonic bandgap (PBG) crystal is demonstrated. The high-Q optical microcavities are formed by etching a triangular array of air holes into a half-wavelength thick multiquantum-well waveguide. Defects in the 2-D photonic crystal are used to support highly localized optical modes with volumes ranging from 2 to 3 (/spl lambda//2n)/sup 3/. Lithographic tuning of the air hole radius and the lattice spacing are used to match the cavity wavelength to the quantum-well gain peak, as well as to increase the cavity Q. The defect lasers were pumped with 10-30 ns pulses of 0.4-1% duty cycle. The threshold pump power was 1.5 mW (/spl ap/500 /spl mu/W absorbed).

204 citations

Journal ArticleDOI
TL;DR: In this article, the authors achieved room temperature (300°K) operation of Ga(1−x)AlxAs•GaAs double-heterostructure lasers with active layers of quantum-well dimensions ∼200 A thick.
Abstract: The achievement of room‐temperature (300 °K) operation of Ga(1−x)AlxAs‐GaAs double‐heterostructure lasers with active layers of quantum‐well dimensions ∼200 A thick is reported. These devices are grown by metalorganic chemical vapor deposition and exhibit pronounced effects in the spectral and lasing characteristics that are related to the small active region thickness and are the first such effects observed for DH lasers in the GaAlAs‐GaAs system.

159 citations


Cited by
More filters
Book
01 Jan 2006
TL;DR: In this paper, the authors proposed a method for propagating and focusing of optical fields in a nano-optics environment using near-field optical probes and probe-sample distance control.
Abstract: 1. Introduction 2. Theoretical foundations 3. Propagation and focusing of optical fields 4. Spatial resolution and position accuracy 5. Nanoscale optical microscopy 6. Near-field optical probes 7. Probe-sample distance control 8. Light emission and optical interaction in nanoscale environments 9. Quantum emitters 10. Dipole emission near planar interfaces 11. Photonic crystals and resonators 12. Surface plasmons 13. Forces in confined fields 14. Fluctuation-induced phenomena 15. Theoretical methods in nano-optics Appendices Index.

3,772 citations

Journal ArticleDOI
TL;DR: In this paper, a new type of semiconductor laser is studied, in which injected carriers in the active region are quantum mechanically confined in two or three dimensions (2D or 3D), and the effects of such confinements on the lasing characteristics are analyzed.
Abstract: A new type of semiconductor laser is studied, in which injected carriers in the active region are quantum mechanically confined in two or three dimensions (2D or 3D). Effects of such confinements on the lasing characteristics are analyzed. Most important, the threshold current of such laser is predicted to be far less temperature sensitive than that of conventional lasers, reflecting the reduced dimensionality of electronic state. In the case of 3D‐QW laser, the temperature dependence is virtually eliminated. An experiment on 2D quantum well lasers is performed by placing a conventional laser in a strong magnetic field (30 T) and has demonstrated the predicted increase of T0 value from 144 to 313 °C.

3,069 citations

Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations

Proceedings Article
01 Jan 2005
TL;DR: In quantum optical devices, microcavities can coax atoms or quantum dots to emit spontaneous photons in a desired direction or can provide an environment where dissipative mechanisms such as spontaneous emission are overcome so that quantum entanglement of radiation and matter is possible.
Abstract: Microcavity physics and design will be reviewed. Following an overview of applications in quantum optics, communications and biosensing, recent advances in ultra-high-Q research will be presented.

2,857 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations