scispace - formally typeset
Search or ask a question
Author

P. E. Lippens

Bio: P. E. Lippens is an academic researcher. The author has contributed to research in topics: Crystallite & Band gap. The author has an hindex of 3, co-authored 3 publications receiving 1411 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the size dependence of the band gap for small CdS and ZnS crystallites (20-2500 atoms) was studied using a simple model of the crystal, which has no dangling bonds and a symmetrical shape.
Abstract: The tight-binding approximation and the recursion method are used to study the size dependence of the band gap for small CdS and ZnS crystallites (20--2500 atoms). Because of the lack of accurate experimental data, a simple model of the crystal is considered; one which has no dangling bonds and a symmetrical shape. It is then possible to have a good evaluation of the band gap, even for the largest crystallites. The optical-absorption spectra exhibit an excitonic peak; we determine the peak position from a simple evaluation of the binding energy. The results are compared with the results of other calculations based upon the effective-mass approximation and some experimental data.

697 citations

Journal Article
TL;DR: The tight-binding approximation and the recursion method are used to study the size dependence of the band gap for small CdS and ZnS crystallites and determine the peak position from a simple evaluation of the binding energy.
Abstract: The tight-binding approximation and the recursion method are used to study the size dependence of the band gap for small CdS and ZnS crystallites (20-2500 atoms). Because of the lack of accurate experimental data, a simple model of the crystal is considered; one which has no dangling bonds and a symmetrical shape. It is then possible to have a good evaluation of the band gap, even for the largest crystallites. The optical-absorption spectra exhibit an excitonic peak; we determine the peak position from a simple evaluation of the binding energy. The results are compared with the results of other calculations based upon the effective-mass approximation and some experimental data.

595 citations

Journal ArticleDOI
TL;DR: On considere deux types de forme cristalline et une constante dielectrique variant dans l'espace d'analyses en bon accord avec les experiences recentes.
Abstract: The lowest excited electronic state of small CdSe crystallites is calculated within a tight-binding approximation. Two types of crystal shape and a spatially varying dielectric constant are considered. The results are found to compare favorably to recent experiments.

140 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the synthesis and study of so-called "nanoparticles" with diameters in the range of 1−20 nm, has become a major interdisciplinary area of research over the past 10 years.
Abstract: The synthesis and study of so-called “nanoparticles”, particles with diameters in the range of 1−20 nm, has become a major interdisciplinary area of research over the past 10 years. Semiconductor nanoparticles promise to play a major role in several new technologies. The intense interest in this area derives from their unique chemical and electronic properties, which gives rise to their potential use in the fields of nonlinear optics, luminescence, electronics, catalysis, solar energy conversion, and optoelectronics, as well as other areas. The small dimensions of these particles result in different physical properties from those observed in the corresponding macrocrystalline, “bulk”, material. As particle sizes become smaller, the ratio of surface atoms to those in the interior increase, leading to the surface properties playing an important role in the properties of the material. Semiconductor nanoparticles also exhibit a change in their electronic properties relative to that of the bulk material; as th...

1,213 citations

Journal ArticleDOI
TL;DR: In this article, the size quantization effect, synthesis and characterization of Q-particles, as well as with the spectroscopic, electrochemical, and electron-microscopic investigation of these particles are discussed.
Abstract: In semiconductor particles of nanometer size, a gradual transition from solid-state to molecular structure occurs as the particle size decreases. Consequently, a splitting of the energy bands into discrete, quantized levels occurs. Particles that exhibit these quantization effects are often called “Q-particles” or, generally, quantized material. The optical, electronic and catalytic properties of Q-particles drastically differ from those of the corresponding macrocrystalline substance. The band gap, a substance-specific quantity in macrocrystalline materials, increases by several electron volts in Q-particles with decreasing particle size. In Q-particles there are approximately as many molecules on the surface as in the interior of the particle. Therefore, the nature of the surface as well as the particle size is also largely responsible for the physico-chemical properties of the particle. Q-particles of many materials can be prepared in the form of colloidal solutions or embedded in porous matrices and are stable over a long period of time. In sandwich colloids, in which Q-particles of different materials are coupled, as well as in porous semiconductor electrodes containing Q-particles in the pores, very efficient primary charge separation is observed. As a result, sandwich colloids have greatly enhanced photocatalytic activity relative to the individual particles, while electrodes modified with Q-particles show high photocurrents. This article deals with the size quantization effect, the synthesis and characterization of Q-particles, as well as with the spectroscopic, electrochemical, and electron-microscopic investigation of these particles.

1,198 citations

Journal ArticleDOI
TL;DR: In this paper, a review is concerned with quantum confinement effects in low-dimensional semiconductor systems, focusing on the optical properties, including luminescence, of nanometre-sized microcrystals.
Abstract: This review is concerned with quantum confinement effects in low-dimensional semiconductor systems. The emphasis is on the optical properties, including luminescence, of nanometre-sized microcrysta...

1,030 citations

Journal ArticleDOI
TL;DR: The luminescent solar concentrator (LSC) is a simple device at its heart, employing a polymeric or glass waveguide and luminecent molecules to generate electricity from sunlight when attached to a photovoltaic cell as mentioned in this paper.
Abstract: Research on the luminescent solar concentrator (LSC) over the past thirty-odd years is reviewed. The LSC is a simple device at its heart, employing a polymeric or glass waveguide and luminescent molecules to generate electricity from sunlight when attached to a photovoltaic cell. The LSC has the potential to find extended use in an area traditionally difficult for effective use of regular photovoltaic panels: the built environment. The LSC is a device very flexible in its design, with a variety of possible shapes and colors. The primary challenge faced by the devices is increasing their photon-to-electron conversion efficiencies. A number of laboratories are working to improve the efficiency and lifetime of the LSC device, with the ultimate goal of commercializing the devices within a few years. The topics covered here relate to the efforts for reducing losses in these devices. These include studies of novel luminophores, including organic fluorescent dyes, inorganic phosphors, and quantum dots. Ways to limit the surface and internal losses are also discussed, including using organic and inorganic-based selective mirrors which allow sunlight in but reflect luminophore-emitted light, plasmonic structures to enhance emissions, novel photovoltaics, alignment of the luminophores to manipulate the path of the emitted light, and patterning of the dye layer to improve emission efficiency. Finally, some possible ‘glimpses of the future’ are offered, with additional research paths that could result in a device that makes solar energy a ubiquitous part of the urban setting, finding use as sound barriers, bus-stop roofs, awnings, windows, paving, or siding tiles.

779 citations