scispace - formally typeset
Search or ask a question
Author

P. F. Van Kessel

Bio: P. F. Van Kessel is an academic researcher from Texas Instruments. The author has contributed to research in topics: Digital micromirror device & Display device. The author has an hindex of 3, co-authored 3 publications receiving 636 citations.

Papers
More filters
Journal ArticleDOI
01 Aug 1998
TL;DR: The digital display engine (DDE) as discussed by the authors is based on a single DMD device having array dimensions of 800/spl times/600 elements, illuminated by a metal halide arc lamp through a compact optics train.
Abstract: A period of rapid growth and change in the display industry has recently given rise to many new display technologies. One such technology, the Digital Micromirror Device/sup TM/ (DMD), developed at Texas Instruments, represents a unique application of microelectromechanical systems to the area of projection displays. In this paper, we describe a representative example of a DMD-based projection display engine, the digital display engine (DDE). The DDE is based on a single-DMD device having array dimensions of 800/spl times/600 elements, illuminated by a metal halide arc lamp through a compact optics train. The engine is designed for portable and fixed conference-room graphics and video display applications, and many design decisions were made to tailor the engine for its intended venue. The design of the projection engine optics and electronics is discussed, along with the basic operation, manufacture, and reliability of the DMD itself.

642 citations

Proceedings ArticleDOI
14 Jun 2001
TL;DR: An overview of the electronics architecture of a DLP/Sup TM/ technology based projector is presented and descriptions of the DMD/sup TM/ modulator drive methods and data formatting electronics are presented.
Abstract: Digital Light Processing/sup TM/ (DLP/sup TM/) projection technology, based on the Digital Micromirror Device/sup TM/ light modulator is currently used in a wide variety of display applications to create high quality imagery. In this paper we present an overview of the electronics architecture of a DLP/sup TM/ technology based projector. Descriptions of the DMD/sup TM/ modulator drive methods and data formatting electronics are presented, as well as a brief summary of the video and graphics processing architectures.

5 citations

Journal ArticleDOI
TL;DR: In this paper, the image quality characteristics of representative samples of several LCD and DLP-based projection display technologies as compared to those of CRT-based HD sets are compared, as well as quantitative image quality metrics, using several established methods.
Abstract: Over the past 18 months, high-definition (HD) home entertainment systems have become available to the U.S. consumer, albeit with a substantial price tag. These systems are based almost exclusively on direct view and rear projection cathode ray tube (CRT) technology. More recently however, a number of manufacturers have made announcements portending the arrival of high-definition television (HDTV) projection systems based on alternative display rechnologies such as transmissive and reflective liquid crystal display (LCD), and digital light processor (DLP) technology. Many of these announcements promise excellent image quality, but demonstrations of prototype systems have shown that there is much variability in subjective image quality from system to system. This paper examines some of the image quality characteristics of representative samples of several LCD and DLP-based projection display technologies as compared to those of CRT-based HD sets. Modulation transfer function (MTF) characteristics are compared, as well as quantitative image quality metrics, using several established methods.

4 citations


Cited by
More filters
Book
Nadim Maluf1
30 Nov 2000
TL;DR: The main aim is to provide an introduction to MEMS by describing the processes and materials available and by using examples of commercially available devices, and the concept of using MEMS devices as key elements within complex systems (or even microsystems!) is explored.
Abstract: If you've not been involved in MEMS (MicroElectroMechanical Systems) technology or had the cause to use MEMS devices, then you may wonder what all the fuss is about. What are MEMS anyway? What's the difference between MEMS and MST (MicroSystems Technology)? What are the advantages over existing technologies? If you have ever found yourself pondering over such questions, then this book may be for you. As the title suggests, the main aim is to provide an introduction to MEMS by describing the processes and materials available and by using examples of commercially available devices. The intended readership are those technical managers, engineers, scientists and graduate students who are keen to learn about MEMS but have little or no experience of the technology. I was particularly pleased to note that Maluf has dedicated a whole chapter to the important (and often difficult) area of packaging. The first three chapters provide a general overview of the technology. Within the first three pages we are introduced to the MEMS versus MST question, only to discover that the difference depends on where you live! The United States prefer MEMS, while the Europeans use the handle MST. (Note to self: tell colleagues in MEMS group at Southampton). A good account is given of the basic materials used in the technology, including silicon, silicon oxide/nitride/carbide, metals, polymers, quartz and gallium arsenide. The various processes involved in the creation of MEMS devices are also described. A good treatment is given to etching and bonding in addition to the various deposition techniques. It was interesting to note that the author doesn't make a big issue of the differences between bulk and surface micromachined devices; the approach seems to be `here's your toolbag - get on with it'. One of the great strengths of this book is the coverage of commercial MEMS structures. Arising as they have, from essentially a planar technology, MEMS devices are often elaborate three-dimensional creations, and 2D drawings don't do them much justice. I have to say that I was extremely impressed with the many aesthetic isometric views of some of these wonderful structures. Pressure sensors, inkjet print nozzles, mass flow sensors, accelerometers, valves and micromirrors are all given sufficient treatment to describe the fundamental behaviour and design philosophy, but without the mathematical rigour expected for a traditional journal paper. Chapter 5 addresses the promise of the technology as a means of enabling a new range of applications. The concept of using MEMS devices as key elements within complex systems (or even microsystems!) is explored. The so-called `lab-on-a-chip' approach is described, whereby complex analytical systems are integrated onto a single chip together with the associated micropumps and microvalves. The design and fabrication of MEMS devices are important issues by themselves. A key area, often overlooked, is that of packaging. Painstaking modelling and intricate fabrication methodologies can produce resonator structures oscillating at precisely, say, 125 kHz. The device is then mounted in a dual-in-line carrier and the frequency shifts by 10 kHz because of the additional internal stresses produced. Packaging issues can't be decoupled from those of the micromachined components. Many of these issues, such as protective coatings, thermal management, calibration etc, are covered briefly in the final chapter. Overall, I found this book informative and interesting. It has a broad appeal and gives a good insight into this fascinating and exciting subject area. Neil White

770 citations

Journal ArticleDOI
TL;DR: The use of various materials, such as silicon, glass and polymers, and their related technologies for the manufacturing of simple microchannels and complex systems is discussed in this paper.
Abstract: Microfluidics is an emerging field that has given rise to a large number of scientific and technological developments over the last few years. This review reports on the use of various materials, such as silicon, glass and polymers, and their related technologies for the manufacturing of simple microchannels and complex systems. It also presents the main application fields concerned with the different technologies and the most significant results reported by academic and industrial teams. Finally, it demonstrates the advantage of developing approaches for associating polymer technologies for manufacturing of fluidic elements with integration of active or sensitive elements, particularly silicon devices.

579 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the adhesion of micromachined surfaces is in a regime not considered by standard rough surface adhesion models and suggested that topographic correlations between the upper and lower surfaces must be considered to understand adhesion completely.
Abstract: Interfacial adhesion and friction are important factors in determining the performance and reliability of microelectro- mechanical systems. We demonstrate that the adhesion of micromachined surfaces is in a regime not considered by standard rough surface adhesion models. At small roughness values, our experiments and models show unambiguously that the adhesion is mainly due to van der Waals dispersion forces acting across extensive non-contacting areas and that it is related to 1/Dave2, where Dave is the average surface separation. These contributions must be considered because of the close proximity of the surfaces, which is a result of the planar deposition technology. At large roughness values, van der Waals forces at contacting asperities become the dominating contributor to the adhesion. In this regime our model calculations converge with standard models in which the real contact area determines the adhesion. We further suggest that topographic correlations between the upper and lower surfaces must be considered to understand adhesion completely.

451 citations

Journal ArticleDOI
TL;DR: This paper presents a tutorial review of both classical "hard" and more recent "soft" micromachining techniques, and provides examples where these techniques are combined to produce hydrogel-based microfluidic control systems.

428 citations

Journal ArticleDOI
20 Aug 2016
TL;DR: In this paper, a two-axis steerable optical phased array with over 500 resolvable spots and 80° steering in the phased array axis (measurement limited) and a record small divergence in both axes (0.14°).
Abstract: Many applications, including laser (LIDAR) mapping, free-space optical communications, and spatially resolved optical sensors, demand compact, robust solutions to steering an optical beam. Fine target addressability (high steering resolution) in these systems requires simultaneously achieving a wide steering angle and a small beam divergence, but this is difficult due to the fundamental trade-offs between resolution and steering range. So far, to our knowledge, chip-based two-axis optical phased arrays have achieved a resolution of no more than 23 resolvable spots in the phased-array axis. Here we report, using non-uniform emitter spacing on a large-scale emitter array, a dramatically higher-performance two-axis steerable optical phased array fabricated in a 300 mm CMOS facility with over 500 resolvable spots and 80° steering in the phased-array axis (measurement limited) and a record small divergence in both axes (0.14°). Including the demonstrated steering range in the other (wavelength-controlled) axis, this amounts to two-dimensional beam steering to more than 60,000 resolvable points.

396 citations