scispace - formally typeset
Search or ask a question
Author

P. Feldmann

Bio: P. Feldmann is an academic researcher from Leibniz University of Hanover. The author has contributed to research in topics: Bose–Einstein condensate & Quantum entanglement. The author has an hindex of 5, co-authored 5 publications receiving 79 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A novel quantum autoencoder is developed that successfully denoises Greenberger-Horne-Zeilinger, W, Dicke, and cluster states subject to spin-flip errors and random unitary noise.
Abstract: Entangled states are an important resource for quantum computation, communication, metrology, and the simulation of many-body systems. However, noise limits the experimental preparation of such states. Classical data can be efficiently denoised by autoencoders-neural networks trained in unsupervised manner. We develop a novel quantum autoencoder that successfully denoises Greenberger-Horne-Zeilinger, W, Dicke, and cluster states subject to spin-flip errors and random unitary noise. Various emergent quantum technologies could benefit from the proposed unsupervised quantum neural networks.

90 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the interferometric value of entanglement accessible by quasiadiabatically driving through quantum phase transitions of a ferromagnetic spin-1 Bose-Einstein condensate in the presence of a tunable quadratic Zeeman shift.
Abstract: Recent experiments demonstrated the generation of entanglement by quasiadiabatically driving through quantum phase transitions of a ferromagnetic spin-1 Bose-Einstein condensate in the presence of a tunable quadratic Zeeman shift. We analyze, in terms of the Fisher information, the interferometric value of the entanglement accessible by this approach. In addition to the Twin-Fock phase studied experimentally, we unveil a second regime, in the broken axisymmetry phase, which provides Heisenberg scaling of the quantum Fisher information and can be reached on shorter time scales. We identify optimal unitary transformations and an experimentally feasible optimal measurement prescription that maximize the interferometric sensitivity. We further ascertain that the Fisher information is robust with respect to nonadiabaticity and measurement noise. Finally, we show that the quasiadiabatic entanglement preparation schemes admit higher sensitivities than dynamical methods based on fast quenches.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a source of entangled atoms that is compatible with state-of-the-art interferometers, transferring the spin degree of freedom of a Bose-Einstein condensate to well-separated momentum modes, witnessed by a squeezing parameter of -3.1(8) dB.
Abstract: Compared to light interferometers, the flux in cold-atom interferometers is low and the associated shot noise large. Sensitivities beyond these limitations require the preparation of entangled atoms in different momentum modes. Here, we demonstrate a source of entangled atoms that is compatible with state-of-the-art interferometers. Entanglement is transferred from the spin degree of freedom of a Bose-Einstein condensate to well-separated momentum modes, witnessed by a squeezing parameter of -3.1(8) dB. Entanglement-enhanced atom interferometers open up unprecedented sensitivities for quantum gradiometers or gravitational wave detectors.

24 citations

Journal ArticleDOI
TL;DR: In this article, a topological order parameter for excited-state quantum phase transitions is introduced. But the model is restricted to mean-field models and cannot be accessed by interferometry in current spinor Bose-Einstein condensates.
Abstract: Excited-state quantum phase transitions extend the notion of quantum phase transitions beyond the ground state. They are characterized by closing energy gaps amid the spectrum. Identifying order parameters for excited-state quantum phase transitions poses, however, a major challenge. We introduce a topological order parameter that distinguishes excited-state phases in a large class of mean-field models and can be accessed by interferometry in current experiments with spinor Bose-Einstein condensates. Our work opens a way for the experimental characterization of excited-state quantum phases in atomic many-body systems.

21 citations

Journal ArticleDOI
TL;DR: This work proposes a protocol to generate macroscopic superposition states of a large number of atoms in the ground state of a spin-1 Bose-Einstein condensate that is robust under realistic conditions in current experiments, including finite adiabaticity, particle loss, and measurement uncertainty.
Abstract: Macroscopic superposition states enable fundamental tests of quantum mechanics and hold a huge potential in metrology, sensing, and other quantum technologies. We propose to generate macroscopic superposition states of a large number of atoms in the ground state of a spin-1 Bose-Einstein condensate. Measuring the number of particles in one mode prepares with large probability highly entangled macroscopic superposition states in the two remaining modes. The macroscopic superposition states are heralded by the measurement outcome. Our protocol is robust under realistic conditions in current experiments, including finite adiabaticity, particle loss, and measurement uncertainty.

15 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the role of pertubative renormalization group (RG) approaches and self-consistent renormalized spin fluctuation (SCR-SF) theories to understand the quantum-classical crossover in the vicinity of the quantum critical point with generalization to the Kondo effect in heavy-fermion systems is discussed.
Abstract: We give a general introduction to quantum phase transitions in strongly-correlated electron systems. These transitions which occur at zero temperature when a non-thermal parameter $g$ like pressure, chemical composition or magnetic field is tuned to a critical value are characterized by a dynamic exponent $z$ related to the energy and length scales $\Delta$ and $\xi$. Simple arguments based on an expansion to first order in the effective interaction allow to define an upper-critical dimension $D_{C}=4$ (where $D=d+z$ and $d$ is the spatial dimension) below which mean-field description is no longer valid. We emphasize the role of pertubative renormalization group (RG) approaches and self-consistent renormalized spin fluctuation (SCR-SF) theories to understand the quantum-classical crossover in the vicinity of the quantum critical point with generalization to the Kondo effect in heavy-fermion systems. Finally we quote some recent inelastic neutron scattering experiments performed on heavy-fermions which lead to unusual scaling law in $\omega /T$ for the dynamical spin susceptibility revealing critical local modes beyond the itinerant magnetism scheme and mention new attempts to describe this local quantum critical point.

1,347 citations

Journal ArticleDOI
TL;DR: In this article, the authors review and illustrate the theory and experiments with atomic ensembles that have demonstrated many-particle entanglement and quantum-enhanced metrology.
Abstract: Quantum technologies exploit entanglement to revolutionize computing, measurements, and communications. This has stimulated the research in different areas of physics to engineer and manipulate fragile many-particle entangled states. Progress has been particularly rapid for atoms. Thanks to the large and tunable nonlinearities and the well-developed techniques for trapping, controlling, and counting, many groundbreaking experiments have demonstrated the generation of entangled states of trapped ions, cold, and ultracold gases of neutral atoms. Moreover, atoms can strongly couple to external forces and fields, which makes them ideal for ultraprecise sensing and time keeping. All these factors call for generating nonclassical atomic states designed for phase estimation in atomic clocks and atom interferometers, exploiting many-body entanglement to increase the sensitivity of precision measurements. The goal of this article is to review and illustrate the theory and the experiments with atomic ensembles that have demonstrated many-particle entanglement and quantum-enhanced metrology.

831 citations

Journal ArticleDOI
TL;DR: In this article , the authors discuss what is possible in this ''noisy intermediate scale'' quantum (NISQ) era, including simulation of many-body physics and chemistry, combinatorial optimization, and machine learning.
Abstract: Noisy quantum computers can in principle perform reliable quantum computations, but truly scalable systems require noise levels lower than are presently achieved. Still, moderate-complexity computations can be performed. This review discusses what is possible in this ``noisy intermediate scale'' quantum (NISQ) era. Topic areas include the simulation of many-body physics and chemistry, combinatorial optimization, and machine learning. It is evident that the NISQ era has produced new paradigms for programming that will be built upon as quantum computers are further perfected.

316 citations

Journal ArticleDOI
TL;DR: The implementation of the Dicke model in fully controllable trapped ion arrays can open a path for the generation of highly entangled states useful for enhanced metrology and the observation of scrambling and quantum chaos in a many-body system.
Abstract: We use a self-assembled two-dimensional Coulomb crystal of ∼70 ions in the presence of an external transverse field to engineer a simulator of the Dicke Hamiltonian, an iconic model in quantum optics which features a quantum phase transition between a superradiant (ferromagnetic) and a normal (paramagnetic) phase. We experimentally implement slow quenches across the quantum critical point and benchmark the dynamics and the performance of the simulator through extensive theory-experiment comparisons which show excellent agreement. The implementation of the Dicke model in fully controllable trapped ion arrays can open a path for the generation of highly entangled states useful for enhanced metrology and the observation of scrambling and quantum chaos in a many-body system.

122 citations

Posted Content
TL;DR: This work represents the first rigorous analysis of the scalability of a perceptron-based QNN and provides quantitative bounds on the scaling of the gradient for DQNNs under different conditions, such as different cost functions and circuit depths.
Abstract: Several architectures have been proposed for quantum neural networks (QNNs), with the goal of efficiently performing machine learning tasks on quantum data. Rigorous scaling results are urgently needed for specific QNN constructions to understand which, if any, will be trainable at a large scale. Here, we analyze the gradient scaling (and hence the trainability) for a recently proposed architecture that we called dissipative QNNs (DQNNs), where the input qubits of each layer are discarded at the layer's output. We find that DQNNs can exhibit barren plateaus, i.e., gradients that vanish exponentially in the number of qubits. Moreover, we provide quantitative bounds on the scaling of the gradient for DQNNs under different conditions, such as different cost functions and circuit depths, and show that trainability is not always guaranteed.

113 citations