scispace - formally typeset
Search or ask a question
Author

P. G. de Gennes

Bio: P. G. de Gennes is an academic researcher from Curie Institute. The author has contributed to research in topics: Liquid crystal & Superconductivity. The author has an hindex of 95, co-authored 346 publications receiving 68661 citations. Previous affiliations of P. G. de Gennes include Liquid Crystal Institute & University of Paris-Sud.


Papers
More filters
Book
15 Dec 1979

10,942 citations

Book
01 Feb 1974
TL;DR: In this paper, the authors define an order parameter statistical theories of the nematic order phenomonological description of the nematic-isotopic mixtures and describe the properties of these mixtures.
Abstract: Part 1 Liquid crystals - main types and properties: introduction - what is a liquid crystal? the building blocks nematics and cholesterics smectics columnar phases more on long-, quasi-long and short-range order remarkable features of liquid crystals. Part 2 Long- and short-range order in nematics: definition of an order parameter statistical theories of the nematic order phenomonological description of the nematic-isotopic mixtures. Part 3 Static distortion in a nematic single crystal: principles of the continuum theory magnetic field effects electric field effects in an insulating nematic fluctuations in the alignment hydrostatics of nematics. Part 4 Defects and textures in nematics: observations disclination lines point disclinations walls under magnetic fields umbilics surface disclinations. Part 5 Dynamical properties of nematics: the equations of "nematodynamics" experiments measuring the Leslie co-efficients convective instabilities under electric fields molecular motions. Part 6 Cholesterics: optical properties of an ideal helix agents influencing the pitch dynamical properties textures and defects in cholesterics. Part 7 Smectics: symmetry of the main smectic phases continuum description of smectics A and C remarks on phase and precritical phenomena.

9,683 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an attempt towards a unified picture with special emphasis on certain features of "dry spreading": (a) the final state of a spreading droplet need not be a monomolecular film; (b) the spreading drop is surrounded by a precursor film, where most of the available free energy is spent; and (c) polymer melts may slip on the solid and belong to a separate dynamical class, conceptually related to the spreading of superfluids.
Abstract: The wetting of solids by liquids is connected to physical chemistry (wettability), to statistical physics (pinning of the contact line, wetting transitions, etc.), to long-range forces (van der Waals, double layers), and to fluid dynamics. The present review represents an attempt towards a unified picture with special emphasis on certain features of "dry spreading": (a) the final state of a spreading droplet need not be a monomolecular film; (b) the spreading drop is surrounded by a precursor film, where most of the available free energy is spent; and (c) polymer melts may slip on the solid and belong to a separate dynamical class, conceptually related to the spreading of superfluids.

6,042 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied possible motions for one polymer molecule P performing wormlike displacements inside a strongly cross-linked polymeric gel G. The topological requirement that P cannot intersect any of the chains of G is taken into account by a rigorous procedure: the only motions allowed for the chain are associated with the displacement of certain "defects" along the chain.
Abstract: We discuss possible motions for one polymer molecule P (of mass M) performing wormlike displacements inside a strongly cross‐linked polymeric gel G. The topological requirement that P cannot intersect any of the chains of G is taken into account by a rigorous procedure: The only motions allowed for the chain are associated with the displacement of certain “defects” along the chain. The main conclusions derived from this model are the following:(a) There are two characteristic times for the chain motion: One of them (Td) is the equilibration time for the defect concentration, and is proportional to M2. The other time (Tr) is the time required for complete renewal of the chain conformation, and is proportional to M3.(b) The over‐all mobility and diffusion coefficients of the chain P are proportional to M−2.(c) At times t < Tr the mean square displacement of one monomer of P increases only like 〈(rt − r0)2〉 = const t1/4.These results may also turn out to be useful for the (more difficult) problem of entangle...

3,467 citations


Cited by
More filters
Book
01 Jan 1982
TL;DR: This book is a blend of erudition, popularization, and exposition, and the illustrations include many superb examples of computer graphics that are works of art in their own right.
Abstract: "...a blend of erudition (fascinating and sometimes obscure historical minutiae abound), popularization (mathematical rigor is relegated to appendices) and exposition (the reader need have little knowledge of the fields involved) ...and the illustrations include many superb examples of computer graphics that are works of art in their own right." Nature

24,199 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: Fractional kinetic equations of the diffusion, diffusion-advection, and Fokker-Planck type are presented as a useful approach for the description of transport dynamics in complex systems which are governed by anomalous diffusion and non-exponential relaxation patterns.

7,412 citations

Journal ArticleDOI
09 Oct 2009-Science
TL;DR: Hi-C is described, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing and demonstrates the power of Hi-C to map the dynamic conformations of entire genomes.
Abstract: We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

7,180 citations