scispace - formally typeset
Search or ask a question
Author

P.G. van Engen

Bio: P.G. van Engen is an academic researcher from Philips. The author has contributed to research in topics: Lattice constant & Magnetization. The author has an hindex of 12, co-authored 17 publications receiving 4843 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The band structure of Mn-based Heusler alloys of the crystal structure (MgAgAs type) has been calculated with the augmented-spherical-wave method.
Abstract: The band structure of Mn-based Heusler alloys of the $C{1}_{b}$ crystal structure (MgAgAs type) has been calculated with the augmented-spherical-wave method. Some of these magnetic compounds show unusual electronic properties. The majority-spin electrons are metallic, whereas the minority-spin electrons are semiconducting.

3,851 citations

Journal ArticleDOI
TL;DR: In this article, the magneto-optical Kerr rotation in more than 200 metallic systems comprising alloys as well as intermetallic compounds of 3D transition metals was studied and the saturation moment at 4.2 K was determined.

686 citations

Journal ArticleDOI
K.H.J. Buschow1, P.G. van Engen1
TL;DR: In this paper, the lattice constants of these compounds were determined and the formation of the Heusler L 2 1 -type phase was compared with model predictions, and it was found that only a limited number of these combinations leads to the cubic L2 1 -Heusler-type compounds.

359 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic structure of PtMnSb was calculated to explain the very high magneto-optical Kerr effect (over 2.5° at 720 nm at room temperature) of this compound.
Abstract: We have calculated the electronic structure of PtMnSb in order to explain the very high magneto‐optical Kerr effect (over 2.5° at 720 nm at room‐temperature) of this compound. It is shown that this behavior is related to the unusual electronic properties of PtMnSb: it is a half‐metallic ferromagnet like NiMnSb. The extreme asymmetry in the electronic structure of these compounds—metallic behavior for one spin direction and at the same time semiconducting behavior for the other spin direction—is responsible for the unusual magneto‐optical properties.

144 citations

Journal ArticleDOI
TL;DR: In this paper, the formation and magnetic properties of Heusler compounds of the general formula X 2 YSn were studied, where X represents a 3D transition metal or Cu and where Y represents a second 3d transition metal of group IV A, VA and VI A of the periodic table.

104 citations


Cited by
More filters
Journal ArticleDOI
16 Nov 2001-Science
TL;DR: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron, which has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices.
Abstract: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.

9,917 citations

Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations

Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: In this article, it was shown that if in-plane homogeneous electric fields are applied across the zigzag-shaped edges of the graphene nanoribbons, their magnetic properties can be controlled by the external electric fields.
Abstract: Electrical current can be completely spin polarized in a class of materials known as half-metals, as a result of the coexistence of metallic nature for electrons with one spin orientation and insulating nature for electrons with the other. Such asymmetric electronic states for the different spins have been predicted for some ferromagnetic metals--for example, the Heusler compounds--and were first observed in a manganese perovskite. In view of the potential for use of this property in realizing spin-based electronics, substantial efforts have been made to search for half-metallic materials. However, organic materials have hardly been investigated in this context even though carbon-based nanostructures hold significant promise for future electronic devices. Here we predict half-metallicity in nanometre-scale graphene ribbons by using first-principles calculations. We show that this phenomenon is realizable if in-plane homogeneous electric fields are applied across the zigzag-shaped edges of the graphene nanoribbons, and that their magnetic properties can be controlled by the external electric fields. The results are not only of scientific interest in the interplay between electric fields and electronic spin degree of freedom in solids but may also open a new path to explore spintronics at the nanometre scale, based on graphene.

3,519 citations

Journal ArticleDOI
TL;DR: In this article, the full-potential screened Korringa-Kohn-Rostoker method was used to study the half-metallic properties of Co, Fe, Rh, and Ru.
Abstract: Using the full-potential screened Korringa-Kohn-Rostoker method we study the full-Heusler alloys based on Co, Fe, Rh, and Ru. We show that many of these compounds show a half-metallic behavior; however, in contrast to the half-Heusler alloys the energy gap in the minority band is extremely small due to states localized only at the Co (Fe, Rh, or Ru) sites which are not present in the half-Heusler compounds. The full-Heusler alloys show a Slater-Pauling behavior and the total spin magnetic moment per unit cell ${(M}_{t})$ scales with the total number of valence electrons ${(Z}_{t})$ following the rule ${M}_{t}{=Z}_{t}\ensuremath{-}24.$ We explain why the spin-down band contains exactly 12 electrons using arguments based on group theory and show that this rule holds also for compounds with less than 24 valence electrons. Finally we discuss the deviations from this rule and the differences compared to the half-Heusler alloys.

1,688 citations