scispace - formally typeset
Search or ask a question
Author

P. Gustafsson

Bio: P. Gustafsson is an academic researcher from Boston Children's Hospital. The author has contributed to research in topics: Medicine & Spirometry. The author has an hindex of 24, co-authored 37 publications receiving 25800 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This research presents a novel and scalable approach called “Standardation of LUNG FUNCTION TESTing” that combines “situational awareness” and “machine learning” to solve the challenge of integrating nanofiltration into the energy system.
Abstract: [⇓][1] SERIES “ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING” Edited by V. Brusasco, R. Crapo and G. Viegi Number 2 in this Series [1]: #F13

13,426 citations

Journal ArticleDOI
TL;DR: This section is written to provide guidance in interpreting pulmonary function tests (PFTs) to medical directors of hospital-based laboratories that perform PFTs, and physicians who are responsible for interpreting the results of PFTS most commonly ordered for clinical purposes.
Abstract: SERIES “ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING” Edited by V. Brusasco, R. Crapo and G. Viegi Number 5 in this Series This section is written to provide guidance in interpreting pulmonary function tests (PFTs) to medical directors of hospital-based laboratories that perform PFTs, and physicians who are responsible for interpreting the results of PFTs most commonly ordered for clinical purposes. Specifically, this section addresses the interpretation of spirometry, bronchodilator response, carbon monoxide diffusing capacity ( D L,CO) and lung volumes. The sources of variation in lung function testing and technical aspects of spirometry, lung volume measurements and D L,CO measurement have been considered in other documents published in this series of Task Force reports 1–4 and in the American Thoracic Society (ATS) interpretative strategies document 5. An interpretation begins with a review and comment on test quality. Tests that are less than optimal may still contain useful information, but interpreters should identify the problems and the direction and magnitude of the potential errors. Omitting the quality review and relying only on numerical results for clinical decision making is a common mistake, which is more easily made by those who are dependent upon computer interpretations. Once quality has been assured, the next steps involve a series of comparisons 6 that include comparisons of test results with reference values based on healthy subjects 5, comparisons with known disease or abnormal physiological patterns ( i.e. obstruction and restriction), and comparisons with self, a rather formal term for evaluating change in an individual patient. A final step in the lung function report is to answer the clinical question that prompted the test. Poor choices made during these preparatory steps increase the risk of misclassification, i.e. a falsely negative or falsely positive interpretation for a lung function abnormality or a change …

5,078 citations

Journal ArticleDOI
TL;DR: This research presents a novel and scalable approach called “Standardation of LUNG FUNCTION TESTing” that combines “situational awareness” and “machine learning” to solve the challenge of integrating nanofiltration into the energy system.
Abstract: [⇓][1] SERIES “ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING” Edited by V. Brusasco, R. Crapo and G. Viegi Number 3 in this Series [1]: #F7

2,414 citations

Journal ArticleDOI
TL;DR: This research presents a novel and scalable approach called “Standardation of LUNG FUNCTION TESTing” that combines “situational awareness” and “machine learning” to solve the challenge of integrating nanofiltration into the energy system.
Abstract: [⇓][1] SERIES “ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING” Edited by V. Brusasco, R. Crapo and G. Viegi Number 4 in this Series [1]: #F4

2,013 citations

Journal ArticleDOI
TL;DR: This statement contains details about procedures that are common for many methods of lung function testing and, hence, are presented on their own and represent a change towards bringing this document in line with the ISO.
Abstract: SERIES “ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING” Edited by V. Brusasco, R. Crapo and G. Viegi Number 1 in this Series ⇓In preparing the joint statements on lung function testing for the American Thoracic Society (ATS) and the European Respiratory Society (ERS), it was agreed by the working party that the format of the statements should be modified so that they were easier to use by both technical and clinical staff. This statement contains details about procedures that are common for many methods of lung function testing and, hence, are presented on their own. A list of abbreviations used in all the documents is also included as part of this statement. All terms and abbreviations used here are based on a report of the American College of Chest Physicians/ATS Joint Committee on Pulmonary Nomenclature 1. The metrology definitions agreed by the International Standards Organization (ISO) are recommended 2 and some important terms are defined as follows. Accuracy is the closeness of agreement between the result of a measurement and the conventional true value. Repeatability is the closeness of agreement between the results of successive measurements of the same item carried out, subject to all of the following conditions: same method, same observer, same instrument, same location, same condition of use, and repeated over a short space of time. In previous documents, the term reproducibility was used in this context, and this represents a change towards bringing this document in line with the ISO. Reproducibility is the closeness of agreement of the results of successive measurements of the same item where the individual measurements are carried out with changed conditions, such as: method of measurement, observer, instrument, location, conditions of use, and time. Thus, if a technician tests a subject several times, this is looking at the …

1,797 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is recommended that spirometry is required for the clinical diagnosis of COPD to avoid misdiagnosis and to ensure proper evaluation of severity of airflow limitation.
Abstract: Chronic obstructive pulmonary disease (COPD) remains a major public health problem. It is the fourth leading cause of chronic morbidity and mortality in the United States, and is projected to rank fifth in 2020 in burden of disease worldwide, according to a study published by the World Bank/World Health Organization. Yet, COPD remains relatively unknown or ignored by the public as well as public health and government officials. In 1998, in an effort to bring more attention to COPD, its management, and its prevention, a committed group of scientists encouraged the U.S. National Heart, Lung, and Blood Institute and the World Health Organization to form the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Among the important objectives of GOLD are to increase awareness of COPD and to help the millions of people who suffer from this disease and die prematurely of it or its complications. The first step in the GOLD program was to prepare a consensus report, Global Strategy for the Diagnosis, Management, and Prevention of COPD, published in 2001. The present, newly revised document follows the same format as the original consensus report, but has been updated to reflect the many publications on COPD that have appeared. GOLD national leaders, a network of international experts, have initiated investigations of the causes and prevalence of COPD in their countries, and developed innovative approaches for the dissemination and implementation of COPD management guidelines. We appreciate the enormous amount of work the GOLD national leaders have done on behalf of their patients with COPD. Despite the achievements in the 5 years since the GOLD report was originally published, considerable additional work is ahead of us if we are to control this major public health problem. The GOLD initiative will continue to bring COPD to the attention of governments, public health officials, health care workers, and the general public, but a concerted effort by all involved in health care will be necessary.

17,023 citations

Journal ArticleDOI
TL;DR: This research presents a novel and scalable approach called “Standardation of LUNG FUNCTION TESTing” that combines “situational awareness” and “machine learning” to solve the challenge of integrating nanofiltration into the energy system.
Abstract: [⇓][1] SERIES “ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING” Edited by V. Brusasco, R. Crapo and G. Viegi Number 2 in this Series [1]: #F13

13,426 citations

Journal ArticleDOI
TL;DR: This document represents the current state of knowledge regarding idiopathic pulmonary fibrosis, and contains sections on definition and epidemiology, risk factors, diagnosis, natural history, staging and prognosis, treatment, and monitoring disease course.
Abstract: This document is an international evidence-based guideline on the diagnosis and management of idiopathic pulmonary fibrosis, and is a collaborative effort of the American Thoracic Society, the European Respiratory Society, the Japanese Respiratory Society, and the Latin American Thoracic Association. It represents the current state of knowledge regarding idiopathic pulmonary fibrosis (IPF), and contains sections on definition and epidemiology, risk factors, diagnosis, natural history, staging and prognosis, treatment, and monitoring disease course. For the diagnosis and treatment sections, pragmatic GRADE evidence-based methodology was applied in a question-based format. For each diagnosis and treatment question, the committee graded the quality of the evidence available (high, moderate, low, or very low), and made a recommendation (yes or no, strong or weak). Recommendations were based on majority vote. It is emphasized that clinicians must spend adequate time with patients to discuss patients' values and preferences and decide on the appropriate course of action.

5,834 citations

Journal ArticleDOI
TL;DR: In this paper, the authors defined the following terms: ALAT, alanine aminotransferase, ASAT, aspartate AMINOTE, and APAH, associated pulmonary arterial hypertension.
Abstract: ALAT : alanine aminotransferase ASAT : aspartate aminotransferase APAH : associated pulmonary arterial hypertension BAS : balloon atrial septostomy BMPR2 : bone morphogenetic protein receptor 2 BNP : brain natriuretic peptide BPA : balloon pulmonary angioplasty BREATHE : Bosentan

5,224 citations

Journal ArticleDOI
TL;DR: This section is written to provide guidance in interpreting pulmonary function tests (PFTs) to medical directors of hospital-based laboratories that perform PFTs, and physicians who are responsible for interpreting the results of PFTS most commonly ordered for clinical purposes.
Abstract: SERIES “ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING” Edited by V. Brusasco, R. Crapo and G. Viegi Number 5 in this Series This section is written to provide guidance in interpreting pulmonary function tests (PFTs) to medical directors of hospital-based laboratories that perform PFTs, and physicians who are responsible for interpreting the results of PFTs most commonly ordered for clinical purposes. Specifically, this section addresses the interpretation of spirometry, bronchodilator response, carbon monoxide diffusing capacity ( D L,CO) and lung volumes. The sources of variation in lung function testing and technical aspects of spirometry, lung volume measurements and D L,CO measurement have been considered in other documents published in this series of Task Force reports 1–4 and in the American Thoracic Society (ATS) interpretative strategies document 5. An interpretation begins with a review and comment on test quality. Tests that are less than optimal may still contain useful information, but interpreters should identify the problems and the direction and magnitude of the potential errors. Omitting the quality review and relying only on numerical results for clinical decision making is a common mistake, which is more easily made by those who are dependent upon computer interpretations. Once quality has been assured, the next steps involve a series of comparisons 6 that include comparisons of test results with reference values based on healthy subjects 5, comparisons with known disease or abnormal physiological patterns ( i.e. obstruction and restriction), and comparisons with self, a rather formal term for evaluating change in an individual patient. A final step in the lung function report is to answer the clinical question that prompted the test. Poor choices made during these preparatory steps increase the risk of misclassification, i.e. a falsely negative or falsely positive interpretation for a lung function abnormality or a change …

5,078 citations