scispace - formally typeset
Search or ask a question
Author

P. H. Alfredsson

Bio: P. H. Alfredsson is an academic researcher. The author has contributed to research in topics: Vortex shedding & Turbine. The author has an hindex of 1, co-authored 1 publications receiving 294 citations.
Topics: Vortex shedding, Turbine, Wake, Wells turbine

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the velocity held in the wake of a two-bladed wind turbine model (diameter 180 mm) has been studied under different conditions using a twocomponent hot wire.
Abstract: The velocity held in the wake of a two-bladed wind turbine model (diameter 180 mm) has been studied under different conditions using a two-component hot wire. All three velocity components were m ...

351 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a suite of large eddy simulations (LES), in which wind turbines are modeled using the classical "drag disk" concept, is performed for various wind-turbine arrangements, turbine loading factors, and surface roughness values.
Abstract: It is well known that when wind turbines are deployed in large arrays, their efficiency decreases due to complex interactions among themselves and with the atmospheric boundary layer (ABL). For wind farms whose length exceeds the height of the ABL by over an order of magnitude, a “fully developed” flow regime can be established. In this asymptotic regime, changes in the streamwise direction can be neglected and the relevant exchanges occur in the vertical direction. Such a fully developed wind-turbine array boundary layer (WTABL) has not been studied systematically before. A suite of large eddy simulations (LES), in which wind turbines are modeled using the classical “drag disk” concept, is performed for various wind-turbine arrangements, turbine loading factors, and surface roughness values. The results are used to quantify the vertical transport of momentum and kinetic energy across the boundary layer. It is shown that the vertical fluxes of kinetic energy are of the same order of magnitude as the power...

807 citations

Journal ArticleDOI
TL;DR: In this paper, a new analytical wake model is proposed and validated to predict the wind velocity distribution downwind of a wind turbine by applying conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in wake.

609 citations

Journal ArticleDOI
TL;DR: In this paper, a tuning-free Lagrangian scale-dependent dynamic subgrid-scale (SGS) model is used for the parametrisation of the SGS stresses, and the turbine-induced forces (e.g., thrust, lift and drag) are parametrised using two models: (a) the standard actuator-disk model (ADM-NR), which calculates only the thrust force and distributes it uniformly over the rotor area; and (b) the actuatordisk model with rotation, which uses the blade-element theory to
Abstract: Large-eddy simulation (LES), coupled with a wind-turbine model, is used to investigate the characteristics of a wind-turbine wake in a neutral turbulent boundary-layer flow. The tuning-free Lagrangian scale-dependent dynamic subgrid-scale (SGS) model is used for the parametrisation of the SGS stresses. The turbine-induced forces (e.g., thrust, lift and drag) are parametrised using two models: (a) the ‘standard’ actuator-disk model (ADM-NR), which calculates only the thrust force and distributes it uniformly over the rotor area; and (b) the actuator-disk model with rotation (ADM-R), which uses the blade-element theory to calculate the lift and drag forces (that produce both thrust and rotation), and distribute them over the rotor disk based on the local blade and flow characteristics. Simulation results are compared to high-resolution measurements collected with hot-wire anemometry in the wake of a miniature wind turbine at the St. Anthony Falls Laboratory atmospheric boundary-layer wind tunnel. In general, the characteristics of the wakes simulated with the proposed LES framework are in good agreement with the measurements in the far-wake region. The ADM-R yields improved predictions compared with the ADM-NR in the near-wake region, where including turbine-induced flow rotation and accounting for the non-uniformity of the turbine-induced forces appear to be important. Our results also show that the Lagrangian scale-dependent dynamic SGS model is able to account, without any tuning, for the effects of local shear and flow anisotropy on the distribution of the SGS model coefficient.

528 citations

Journal ArticleDOI
TL;DR: In this article, a tuning-free Lagrangian scale-dependent dynamic model is used to model the dynamics of subgrid-scale turbulent fluxes and turbine-induced forces.

466 citations

Journal ArticleDOI
TL;DR: In this article, a model wind turbine placed in a boundary layer developed over rough and smooth surfaces was used to study turbulence in the wake of a wind turbine, and the cross-sectional distribution of mean velocity, turbulence intensity and kinematic shear stress at different locations downwind of the turbine for both surface roughness cases.
Abstract: Wind-tunnel experiments were performed to study turbulence in the wake of a model wind turbine placed in a boundary layer developed over rough and smooth surfaces. Hot-wire anemometry was used to characterize the cross-sectional distribution of mean velocity, turbulence intensity and kinematic shear stress at different locations downwind of the turbine for both surface roughness cases. Special emphasis was placed on the spatial distribution of the velocity deficit and the turbulence intensity, which are important factors affecting turbine power generation and fatigue loads in wind energy parks. Non-axisymmetric behaviour of the wake is observed over both roughness types in response to the non-uniform incoming boundary-layer flow and the effect of the surface. Nonetheless, the velocity deficit with respect to the incoming velocity profile is nearly axisymmetric, except near the ground in the far wake where the wake interacts with the surface. It is found that the wind turbine induces a large enhancement of turbulence levels (positive added turbulence intensity) in the upper part of the wake. This is due to the effect of relatively large velocity fluctuations associated with helicoidal tip vortices near the wake edge, where the mean shear is strong. In the lower part of the wake, the mean shear and turbulence intensity are reduced with respect to the incoming flow. The non-axisymmetry of the turbulence intensity distribution of the wake is found to be stronger over the rough surface, where the incoming flow is less uniform at the turbine level. In the far wake the added turbulent intensity, its positive and negative contributions and its local maximum decay as a power law of downwind distance (with an exponent ranging from −0.3 to −0.5 for the rough surface, and with a wider variation for the smooth surface). Nevertheless, the effect of the turbine on the velocity defect and added turbulence intensity is not negligible even in the very far wake, at a distance of fifteen times the rotor diameter.

446 citations