scispace - formally typeset
Search or ask a question
Author

P. H. Citrin

Bio: P. H. Citrin is an academic researcher from Bell Labs. The author has contributed to research in topics: Extended X-ray absorption fine structure & Luminescence. The author has an hindex of 34, co-authored 71 publications receiving 5903 citations. Previous affiliations of P. H. Citrin include National Center for Electron Microscopy.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the development of extended x-ray absorption fine structure (EXAFS) within the last decade and discuss selected examples of applications of EXAFS chosen to illustrate both the strength and limitations of this structural tool.
Abstract: The authors review the development of extended x-ray absorption fine structure (EXAFS) within the last decade. Advances in experimental techniques have been largely stimulated by the availability of synchrotron radiation. The theory of EXAFS has also matured to the point where quantitative comparison with experiments can be made. The authors review in some detail the analysis of EXAFS data, starting from the treatment of raw data to the extraction of distances and amplitude information, and they also discuss selected examples of applications of EXAFS chosen to illustrate both the strength and limitations of EXAFS as a structural tool.

1,507 citations

Journal ArticleDOI
TL;DR: In this paper, the surface-atom $4f$ level is shifted 0.40 eV to lower binding energy relative to the bulk value, and the surface density of states is narrowed by (7.6 \ifmmode\pm\else\textpm\fi{} 1.1)%.
Abstract: X-ray photoemission spectra of $4f$ and valence electrons in surface atoms of gold have been obtained. The surface-atom $4f$ level is shifted 0.40\ifmmode\pm\else\textpm\fi{}0.01 eV to lower binding energy relative to the bulk value. The surface density of states is narrowed by (7.6 \ifmmode\pm\else\textpm\fi{} 1.1)% and its center of gravity is shifted to lower binding energy by 0.51\ifmmode\pm\else\textpm\fi{}0.08 eV. A model is proposed to account for the core-level shift in terms of the modified surface density of states.

313 citations

Journal ArticleDOI
TL;DR: Near-edge and extended x-ray-absorption fine-structure measurements from a wide variety of oxidized Si nanocrystals and H-passivated porous Si samples, combined with electron microscopy, ir absorption, forward recoil scattering, and luminescence emission data, provide a consistent structural picture of the species responsible for the Luminescence observed in these systems.
Abstract: Near-edge and extended x-ray-absorption fine-structure measurements from a wide variety of oxidized Si nanocrystals and H-passivated porous Si samples, combined with electron microscopy, ir absorption, forward recoil scattering, and luminescence emission data, provide a consistent structural picture of the species responsible for the luminescence observed in these systems. For porous Si samples whose luminescence wavelengths peak in the visible region, i.e., at {lt}700 nm, their mass-weighted-average structures are determined here to be particles (not wires) whose short-range character is crystalline and whose dimensions---typically {lt}15 A---are significantly smaller than previously reported or proposed. Results are also presented which demonstrate that the observed visible luminescence is not related to either a photo-oxidized Si species in porous Si or an interfacial suboxide species in the Si nanocrystals. The structural and compositional findings reported here depend only on sample luminescence behavior, not on how the luminescent particles are produced, and thus have general implications in assigning quantum confinement as the mechanism responsible for the visible luminescence observed in both nanocrystalline and porous silicon.

296 citations

Journal ArticleDOI
TL;DR: In this paper, the structural characterization, electronic spectroscopy, and excited-state dynamics of surface-oxidized Si nanocrystals, prepared in a high-temperature aerosol apparatus, are studied to gain insight into the emission mechanism of visible light from these systems.
Abstract: The structural characterization, electronic spectroscopy, and excited-state dynamics of surface-oxidized Si nanocrystals, prepared in a high-temperature aerosol apparatus, are studied to gain insight into the emission mechanism of visible light from these systems. The results are compared with direct-gap CdSe nanocrystals, indirect-gap AgBr nanocrystals, bulk crystalline silicon, and porous silicon thin films. As the size of the Si crystallites decreases to 1-2 nm in diameter, the band gap and luminescence energy correspondingly increase to near 2.0 eV, or 0.9 eV above the bulk 1.1-eV band gap. The absorption and luminescence spectra remain indirect-gap-like with strong transverse optical vibronic origins. The quantum yield increases to about 5% at room temperature, but the unimolecular radiative rate remains quite long, approximately 10{sup {minus}3}-10{sup {minus}4} s{sup {minus}1}. The luminescence properties of Si nanocrystals and porous Si are consistent, in most respects, with simple emission from size-dependent, volume-quantum-confined nanocrystal states. Room-temperature quantum yields increase not because coupling to the radiation field is stronger in confined systems, but because radiationless processes, which dominate bulk Si emission, are significantly weaker in nanocrystalline Si. An analogous series of changes occurs in nanocrystalline AgBr. 42 refs., 8 figs.

265 citations

Journal ArticleDOI
TL;DR: X-ray absorption measurements from H-passivated porous Si and from oxidized Si nanocrystals, combined with electron microscopy, ir absorption, [alpha] recoil, and luminescence emission data, provide a consistent structural picture of the species responsible for the visible Luminescence observed in these samples.
Abstract: X-ray absorption measurements from H-passivated porous Si and from oxidized Si nanocrystals, combined with electron microscopy, ir absorption, \ensuremath{\alpha} recoil, and luminescence emission data, provide a consistent structural picture of the species responsible for the visible luminescence observed in these samples. The mass-weighted average structures in por-Si are particles, not wires, with dimensions significantly smaller than previously reported or proposed.

243 citations


Cited by
More filters
Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
09 Jan 1998-Science
TL;DR: Studies carried out with different conditions and catalyst materials confirmed the central details of the growth mechanism and suggest that well-established phase diagrams can be used to predict rationally catalyst materials and growth conditions for the preparation of nanowires.
Abstract: A method combining laser ablation cluster formation and vapor-liquid-solid (VLS) growth was developed for the synthesis of semiconductor nanowires. In this process, laser ablation was used to prepare nanometer-diameter catalyst clusters that define the size of wires produced by VLS growth. This approach was used to prepare bulk quantities of uniform single-crystal silicon and germanium nanowires with diameters of 6 to 20 and 3 to 9 nanometers, respectively, and lengths ranging from 1 to 30 micrometers. Studies carried out with different conditions and catalyst materials confirmed the central details of the growth mechanism and suggest that well-established phase diagrams can be used to predict rationally catalyst materials and growth conditions for the preparation of nanowires.

4,405 citations

Journal ArticleDOI
TL;DR: This Review summarize recent advances in the synthesis and characterization of C-dots and speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.
Abstract: Similar to its popular older cousins the fullerene, the carbon nanotube, and graphene, the latest form of nanocarbon, the carbon nanodot, is inspiring intensive research efforts in its own right. These surface-passivated carbonaceous quantum dots, so-called C-dots, combine several favorable attributes of traditional semiconductor-based quantum dots (namely, size- and wavelength-dependent luminescence emission, resistance to photobleaching, ease of bioconjugation) without incurring the burden of intrinsic toxicity or elemental scarcity and without the need for stringent, intricate, tedious, costly, or inefficient preparation steps. C-dots can be produced inexpensively and on a large scale (frequently using a one-step pathway and potentially from biomass waste-derived sources) by many approaches, ranging from simple candle burning to in situ dehydration reactions to laser ablation methods. In this Review, we summarize recent advances in the synthesis and characterization of C-dots. We also speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.

3,991 citations

Journal ArticleDOI
TL;DR: In this paper, the present status and new opportunities for research in this area of materials physical chemistry are reviewed, as well as a review of the present state and opportunities in this field.
Abstract: Semiconductor nanocrystals exhibit a wide range of size-dependent properties. Variations in fundamental characteristics ranging from phase transitions to electrical conductivity can be induced by controlling the size of the crystals. The present status and new opportunities for research in this area of materials physical chemistry are reviewed.

3,493 citations

Journal ArticleDOI
TL;DR: A large amount of work world wide has been directed towards obtaining an understanding of the fundamental characteristics of porous Si as mentioned in this paper, and the key importance of crystalline Si nanostructures in determining the behaviour of porous si is highlighted.
Abstract: A large amount of work world-wide has been directed towards obtaining an understanding of the fundamental characteristics of porous Si. Much progress has been made following the demonstration in 1990 that highly porous material could emit very efficient visible photoluminescence at room temperature. Since that time, all features of the structural, optical and electronic properties of the material have been subjected to in-depth scrutiny. It is the purpose of the present review to survey the work which has been carried out and to detail the level of understanding which has been attained. The key importance of crystalline Si nanostructures in determining the behaviour of porous Si is highlighted. The fabrication of solid-state electroluminescent devices is a prominent goal of many studies and the impressive progress in this area is described.

2,371 citations