scispace - formally typeset
Search or ask a question
Author

P. Ilaiyaraja

Bio: P. Ilaiyaraja is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Adsorption & Aqueous solution. The author has an hindex of 15, co-authored 32 publications receiving 636 citations. Previous affiliations of P. Ilaiyaraja include Indira Gandhi Centre for Atomic Research & VIT University.

Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that herceptin targeted DGA functionalized PAMAM-cisplatin conjugates serve as better anti-tumor agents than individual therapeutic agents.

40 citations

Journal ArticleDOI
TL;DR: In this paper, the adsorption behavior of the DGA-functionalized-MWCNTs towards thorium from aqueous solution was studied under varying operating conditions of pH, concentration of thorium, diglycolamide (DGA) dosages, contact time, and temperature.
Abstract: Multi-walled carbon nanotubes (MWCNTs) were functionalized with diglycolamide (DGA) through chemical covalent route. The adsorption behavior of the DGA-functionalized-MWCNTs (DGA-MWCNTs) towards thorium from aqueous solution was studied under varying operating conditions of pH, concentration of thorium, DGA-MWCNTs dosages, contact time, and temperature. The effective range of pH for the removal of Th(IV) is 3.0–4.0. Kinetic data followed a pseudo-second-order model. The equilibrium data were correlated with the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin models. The equilibrium data are best fitted with Langmuir model. The equilibrium Th(IV) sorption capacity was estimated to be 10.58 mg g−1 at 298 K. The standard enthalpy, entropy, and free energy of adsorption of the thorium with DGA-MWCNTs were calculated to be 8.952 kJ mol−1, 0.093 kJ mol−1 K−1 and -18.521 kJ mol−1 respectively at 298 K. The determined value of sticking probability (0.072) and observed kinetic and isotherm models reveal the chemical adsorption of thorium on DGA-MWCNTs.

36 citations

Journal ArticleDOI
TL;DR: The hybrid composite exhibit Forster resonance energy transfer cascading from POPOP to CIZS which results in emission covering the entire visible spectral range and is a versatile material for WLED applications.
Abstract: Cu-deficient graded-zinc Cu-In-Zn-S (CIZS) quantum dots (QDs) were synthesized by a two-step solvothermal method. These CIZS QDs exhibited size and composition tunable photoluminescence characteristics with emission color tunable from greenish-yellow to orange to red with a relatively high quantum yield between 45 and 60%. Novel white-light-emitting (WLE) hybrid composite is fabricated by integrating the blue-emissive 1,4-bis-2-(5-phenyl oxazolyl)-benzene (POPOP) organic fluorophore and quaternary CIZS inorganic QDs. Integrating CIZS QDs with POPOP fluorophore resulted in series of tunable emission colors with CIE coordinates lying in a straight line between the coordinates of the end member. WLE was shown for hybrid mixture comprising 0.5 nM of POPOP and 3 mg/mL of CIZS QDs with color coordinates (0.3312, 0.3324). Thin films of this hybrid mixture in PMMA matrix coated on UV-LED or on glass substrates with UV backlit light also showed broadband WLE with ideal CIE color coordinates of (0.34, 0.33), high color-rendering index value of 92, and correlated color temperature value of 5143 K. The hybrid composite exhibit Forster resonance energy transfer cascading from POPOP to CIZS which results in emission covering the entire visible spectral range. POPOP and CIZS QDs hybrid composite is a versatile material for WLED applications.

36 citations

Journal ArticleDOI
TL;DR: In this paper, the nano-hydroxyapatatite (NHAp), NHAp/PEG and NHAP/PVP have been derived from Clam shell by precipitation method.

33 citations

Journal ArticleDOI
TL;DR: In this article, the authors used 3-mercaptopropionic acid in a single phase one-step procedure to enable efficient loading of QDs onto photoanode and as linker molecule for charge carrier extraction.

31 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current state-of-the-art of available technologies for water purification are reviewed and their field of application for heavy metal ion removal is discussed, as heavy metal ions are the most harmful and widespread contaminants.
Abstract: Water pollution is a global problem threatening the entire biosphere and affecting the life of many millions of people around the world. Not only is water pollution one of the foremost global risk factors for illness, diseases and death, but it also contributes to the continuous reduction of the available drinkable water worldwide. Delivering valuable solutions, which are easy to implement and affordable, often remains a challenge. Here we review the current state-of-the-art of available technologies for water purification and discuss their field of application for heavy metal ion removal, as heavy metal ions are the most harmful and widespread contaminants. We consider each technology in the context of sustainability, a largely neglected key factor, which may actually play a pivotal role in the implementation of each technology in real applications, and we introduce a compact index, the Ranking Efficiency Product (REP), to evaluate the efficiency and ease of implementation of the various technologies in this broader perspective. Emerging technologies, for which a detailed quantitative analysis and assessment is not yet possible according to this methodology, either due to scarcity or inhomogeneity of data, are discussed in the final part of the manuscript.

838 citations

Journal Article
TL;DR: In the limit of a QD much smaller than the bulk exciton size, the linear spectrum will be a series of lines, and the phonon broadening of these lines is considered.
Abstract: We analyze theoretically the optical properties of ideal semiconductor crystallites so small that they show quantum confinement in all three dimensions [quantum dots (QD's)]. In the limit of a QD much smaller than the bulk exciton size, the linear spectrum will be a series of lines, and we consider the phonon broadening of these lines. The lowest interband transition will saturate like a two-level system, without exchange and Coulomb screening. Depending on the broadening, the absorption and the changes in absorption and refractive index resulting from saturation can become very large, and the local-field effects can become so strong as to give optical bistability without external feedback. The small QD limit is more readily achieved with narrow-band-gap semiconductors.

788 citations

Journal ArticleDOI
29 Mar 2021
TL;DR: Nanomaterials have emerged as an amazing class of materials that consists of a broad spectrum of examples with at least one dimension in the range of 1 to 100 nm as discussed by the authors.
Abstract: Nanomaterials have emerged as an amazing class of materials that consists of a broad spectrum of examples with at least one dimension in the range of 1 to 100 nm. Exceptionally high surface areas can be achieved through the rational design of nanomaterials. Nanomaterials can be produced with outstanding magnetic, electrical, optical, mechanical, and catalytic properties that are substantially different from their bulk counterparts. The nanomaterial properties can be tuned as desired via precisely controlling the size, shape, synthesis conditions, and appropriate functionalization. This review discusses a brief history of nanomaterials and their use throughout history to trigger advances in nanotechnology development. In particular, we describe and define various terms relating to nanomaterials. Various nanomaterial synthesis methods, including top-down and bottom-up approaches, are discussed. The unique features of nanomaterials are highlighted throughout the review. This review describes advances in nanomaterials, specifically fullerenes, carbon nanotubes, graphene, carbon quantum dots, nanodiamonds, carbon nanohorns, nanoporous materials, core–shell nanoparticles, silicene, antimonene, MXenes, 2D MOF nanosheets, boron nitride nanosheets, layered double hydroxides, and metal-based nanomaterials. Finally, we conclude by discussing challenges and future perspectives relating to nanomaterials.

628 citations

Journal Article
LI Sheng-mei1
TL;DR: This sentence pattern typically shows the features of proverbs like "秀才秂才,错字布袋" in language structure, semantic meaning and pragmatic function.
Abstract: Sentence patterns like "秀才秀才,错字布袋"are unique in the grammatical structure, semantic structure and pragmatic function. The typical feature of this pattern is that the same word or phrase reappears continually at the very beginning. It has two parts: (1) The proceeding part("秀才秀才") includes a word and its repeated form, which is different from the reduplication in grammar and the continual repetition in rhetoric. This part can have referential functions in particular situations;and (2) The main function of the last part ("错字布袋")is to interpret the proceeding one. It is the semantic focus of the whole sentence. This sentence pattern typically shows the features of proverbs like "秀才秀才,错字布袋"in language structure,semantic meaning and pragmatic function.

367 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a systematic and comprehensive overview of the researches conducted from 2005 to 2018 for removing uranium from aqueous solution by these emerging materials, including inorganic materials (e.g., clay minerals, metal oxides, mesoporous silica), organic polymers, carbon family materials, and porous framework materials.

337 citations