scispace - formally typeset
Search or ask a question
Author

P. J. Carroll

Bio: P. J. Carroll is an academic researcher from Bell Labs. The author has contributed to research in topics: Excited state & Raman spectroscopy. The author has an hindex of 9, co-authored 10 publications receiving 3184 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple theoretical model for the LUMO and HOMO of layered crystallites is presented, showing that a small (< 15-angstrom) diameter interior foreign seed causes only small shifts of the lowest excited state, to either higher or lower energies.
Abstract: Composite semiconductor crystallites involving CdSe grown on an ZnS seed, and vice versa, have been synthesized and capped with organic ligands in inverse micelle solutions. These composite particles, as well as capped seed crystallites of CdSe and ZnS, are isolated, purified, and characterized for relative atomic composition, structure, and electronic properties. The Debye X-ray scattering equation, when solved for these layered particles, shows that powder X-ray scattering is insensitive to a small foreign inclusion. A simple theoretical model for the LUMO and HOMO of layered crystallites shows that a small (< 15-{angstrom} diameter) interior foreign seed causes only small shifts of the lowest excited state, to either higher or lower energies. The capped CdSe seed and the capped CdSe portion of the layered particle grown on a ZnSe seed undergo low-temperature (169{degree}C) annealing to give near-single-crystal X-ray scattering. However, CdSe annealing is blocked by a surface ZnS layer which is ca. 4 {angstrom} thick. While growth to make composite particles does occur, neither particle shows evidence for epitaxial growth.

856 citations

Journal ArticleDOI
TL;DR: In this article, the authors used time, wavelength, temperature, and polarization-resolved luminescence to elucidate the nature of absorbing and band edge states in 32 A diameter wurtzite CdSe quantum crystallites.
Abstract: We use time‐, wavelength‐, temperature‐, polarization‐resolved luminescence to elucidate the nature of the absorbing and ‘‘band edge’’ luminescing states in 32 A diameter wurtzite CdSe quantum crystallites. Time‐resolved emission following picosecond size‐selective resonant excitation of the lowest excited state shows two components—a temperature insensitive 100 ps component and a microsecond, temperature sensitive component. The emission spectrum, showing optic phonon vibrational structure, develops a ∼70 wave number red shift as the fast component decays. Photoselection shows the slow component to be reverse polarized at 10 K, indicating this component to be the result of a hole radiationless transition. The 100 ps emitting state is repopulated thermally as temperature increases from 10 to 50 K. All available data are interpreted by postulating strong resonant mixing between a standing wave molecular orbital delocalized inside the crystallite and intrinsic surface Se lone pair states. The apparent excit...

727 citations

Journal ArticleDOI
01 Apr 1989-Nature
TL;DR: In this paper, the authors reported the discovery of the biosynthesis of quantum crystallites in yeasts Candida glabrata and Schizosaccharomyces pombe, cultured in the presence of cad-mium salts.
Abstract: NANOMETRE-SCALE semiconductor quantum crystallites exhibit size-dependent and discrete excited electronic states which occur at energies higher than the band gap of the corresponding bulk solid1–4. These crystallites are too small to have continuous energy bands, even though a bulk crystal structure is present. The onset of such quantum properties sets a fundamental limit to device miniaturization in microelectronics5. Structures with either one, two or all three dimensions on the nanometer scale are of particular interest in solid state physics6. We report here our discovery of the biosynthesis of quantum crystallites in yeasts Candida glabrata and Schizosaccharomyces pombe, cultured in the presence of cad-mium salts. Short chelating peptides of general structure (γ-Glu-Cys)n-Gly control the nucleation and growth of CdS crystallites to peptide-capped intracellular particles of diameter 20 A. These quantum CdS crystallites are more monodisperse than CdS par-ticles synthesized chemically. X-ray data indicate that, at this small size, the CdS structure differs from that of bulk CdS and tends towards a six-coordinate rock-salt structure.

678 citations

Journal ArticleDOI
TL;DR: The band-gap luminescence is not from the exciton state, but from a surface trapped state and results in long-lived bleach and induced-absorption features in pump-probe experiments.
Abstract: We use transient optical hole burning and photoluminescence to investigate the static and dynamic electronic properties of 32-\AA{} CdSe quantum dots. We observe a number of discrete electronic transitions, resolve LO-phonon progressions, and obtain homogeneous linewidths and electron--LO-phonon couplings. We find that the band-gap luminescence is not from the exciton state, but from a surface trapped state. Rapid (\ensuremath{\sim}160 fs) trapping into these surface states results in long-lived (\ensuremath{\sim}10--100 ns) bleach and induced-absorption features in pump-probe experiments.

509 citations

Journal ArticleDOI
TL;DR: In this article, the resonance Raman spectrum of CdSe clusters was measured and the incident photons were resonant with the HOMO-LUMO transition in the clusters, and the strength of the coupling between the lowest electronic excited state and the LO vibration was found to be 20 times weaker in these clusters than in the bulk solid.
Abstract: The resonance Raman spectrum of 45(+−3) A diameter CdSe clusters was measured. The incident photons were resonant with the HOMO–LUMO transition in the clusters. At low temperature, one mode at 205 cm−1 is observed, as well as two overtones, with the integrated areas under these peaks in the ratio of 9:3:1. This mode is assigned as the longest wavelength longitudinal optical vibration of the cluster. The strength of the coupling between the lowest electronic excited state and the LO vibration is found to be 20 times weaker in these clusters than in the bulk solid. The CdSe cluster resonance Raman spectrum is shown to be consistent with the recently measured homogeneous cluster absorption spectrum.

245 citations


Cited by
More filters
Journal ArticleDOI
28 Jan 2005-Science
TL;DR: The new generations of qdots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.
Abstract: Research on fluorescent semiconductor nanocrystals (also known as quantum dots or qdots) has evolved over the past two decades from electronic materials science to biological applications. We review current approaches to the synthesis, solubilization, and functionalization of qdots and their applications to cell and animal biology. Recent examples of their experimental use include the observation of diffusion of individual glycine receptors in living neurons and the identification of lymph nodes in live animals by near-infrared emission during surgery. The new generations of qdots have farreaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.

7,499 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: In this paper, a synthesis of highly luminescent (CdSe)ZnS composite quantum dots with CdSe cores ranging in diameter from 23 to 55 A was reported.
Abstract: We report a synthesis of highly luminescent (CdSe)ZnS composite quantum dots with CdSe cores ranging in diameter from 23 to 55 A. The narrow photoluminescence (fwhm ≤ 40 nm) from these composite dots spans most of the visible spectrum from blue through red with quantum yields of 30−50% at room temperature. We characterize these materials using a range of optical and structural techniques. Optical absorption and photoluminescence spectroscopies probe the effect of ZnS passivation on the electronic structure of the dots. We use a combination of wavelength dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, small and wide angle X-ray scattering, and transmission electron microscopy to analyze the composite dots and determine their chemical composition, average size, size distribution, shape, and internal structure. Using a simple effective mass theory, we model the energy shift for the first excited state for (CdSe)ZnS and (CdSe)CdS dots with varying shell thickness. Finally, we characterize the...

4,293 citations

Journal ArticleDOI
TL;DR: In this article, solution phase syntheses and size-selective separation methods to prepare semiconductor and metal nanocrystals, tunable in size from ∼1 to 20 nm and monodisperse to ≤ 5%, are presented.
Abstract: ▪ Abstract Solution phase syntheses and size-selective separation methods to prepare semiconductor and metal nanocrystals, tunable in size from ∼1 to 20 nm and monodisperse to ≤5%, are presented. Preparation of monodisperse samples enables systematic characterization of the structural, electronic, and optical properties of materials as they evolve from molecular to bulk in the nanometer size range. Sample uniformity makes it possible to manipulate nanocrystals into close-packed, glassy, and ordered nanocrystal assemblies (superlattices, colloidal crystals, supercrystals). Rigorous structural characterization is critical to understanding the electronic and optical properties of both nanocrystals and their assemblies. At inter-particle separations 5–100 A, dipole-dipole interactions lead to energy transfer between neighboring nanocrystals, and electronic tunneling between proximal nanocrystals gives rise to dark and photoconductivity. At separations <5 A, exchange interactions cause otherwise insulating ass...

4,116 citations