scispace - formally typeset
Search or ask a question
Author

P.J. Fogarty

Bio: P.J. Fogarty is an academic researcher from Oak Ridge National Laboratory. The author has contributed to research in topics: Fusion power & National Compact Stellarator Experiment. The author has an hindex of 15, co-authored 39 publications receiving 1046 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors explored novel concepts for fusion chamber technology that can substantially improve the attractiveness of fusion energy systems, including the potential for: (1) high power density capability; (2) higher plasma β and stable physics regimes if liquid metals are used; (3) increased disruption survivability; (4) reduced volume of radioactive waste; (5) reduced radiation damage in structural materials; and (6) higher availability.

319 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a design concept that allows straight-line access via remote handling to all activated fusion core components and present a system code that combines the key required plasma and engineering science conditions of CTF.
Abstract: Recent experiments (Synakowski et al 2004 Nucl. Fusion 43 1648, Lloyd et al 2004 Plasma Phys. Control. Fusion 46 B477) on the Spherical Tokamak (or Spherical Torus, ST) (Peng 2000 Phys. Plasmas 7 1681) have discovered robust plasma conditions, easing shaping, stability limits, energy confinement, self-driven current and sustainment. This progress has encouraged an update of the plasma conditions and engineering of a Component Test Facility (CTF), (Cheng 1998 Fusion Eng. Des. 38 219) which is a very valuable step in the development of practical fusion energy. The testing conditions in a CTF are characterized by high fusion neutron fluxes Γn ≈ 8.8 × 1013 n s−1 cm−2 ('wall loading' WL ≈ 2 MW m−2), over size-scale >105 cm2 and depth-scale >50 cm, delivering >3 accumulated displacement per atom per year ('neutron fluence' >0.3 MW yr−1 m−2) (Abdou et al 1999 Fusion Technol. 29 1). Such conditions are estimated to be achievable in a CTF with R0 = 1.2 m, A = 1.5, elongation ~3, Ip ~ 12 MA, BT ~ 2.5 T, producing a driven fusion burn using 47 MW of combined neutral beam and RF heating power. A design concept that allows straight-line access via remote handling to all activated fusion core components is developed and presented. The ST CTF will test the lifetime of single-turn, copper alloy centre leg for the toroidal field coil without an induction solenoid and neutron shielding and require physics data on solenoid-free plasma current initiation, ramp-up to and sustainment at multiple megaampere level. A systems code that combines the key required plasma and engineering science conditions of CTF has been prepared and utilized as part of this study. The results show high potential for a family of relatively low cost CTF devices to suit a range of fusion engineering and technology test missions.

139 citations

Journal ArticleDOI
TL;DR: The ARIES-RS as discussed by the authors is a prototype of a future fusion reactor with liquid wall technology for a first wall and divertor and a blanket with adequate tritium breeding.

58 citations

01 Sep 2003
TL;DR: The ARIES-RS as mentioned in this paper is a prototype of a future fusion reactor with liquid wall technology for a first wall and divertor and a blanket with adequate tritium breeding.
Abstract: Within the magnetic fusion energy program in the US, a program called APEX is investigating the use of free flowing liquid surfaces to form the inner surface of the chamber around the plasma. As part of this work, the APEX Team has investigated several possible design implementations and developed a specific engineering concept for a fusion reactor with liquid walls. Our approach has been to utilize an already established design for a future fusion reactor, the ARIES-RS, for the basic chamber geometry and magnetic configuration, and to replace the chamber technology in this design with liquid wall technology for a first wall and divertor and a blanket with adequate tritium breeding. This paper gives an overview of one design with a molten salt (a mixture of lithium, beryllium and sodium fluorides) forming the liquid surfaces and a ferritic steel for the structural material of the blanket. The design point is a reactor with 3840 MW of fusion power of which 767 MW is in the form of energetic particles (alpha power) and 3073 MW is in the form of neutrons. The alpha plus auxiliary power total 909 MW of which 430 MW is radiated from the core mostly onto themore » first wall and the balance flows into the edge plasma and is distributed between the first wall and the divertor. In pursuing the application of liquid surfaces in APEX, the team has developed analytical tools that are significant achievements themselves and also pursued experiments on flowing liquids. This work is covered elsewhere, but the paper will also note several such areas to indicate the supporting science behind the design presented. Significant new work in modeling the plasma edge to understand the interaction of the plasma with the liquid walls is one example. Another is the incorporation of magneto-hydrodynamic (MHD) effects in fluid modeling and heat transfer.« less

57 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors.
Abstract: The major increase in discharge duration and plasma energy in a next step DT fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety and performance. Erosion will increase to a scale of several centimetres from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma facing components. Controlling plasma-wall interactions is critical to achieving high performance in present day tokamaks, and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena stimulated an internationally co-ordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor project (ITER), and significant progress has been made in better understanding these issues. The paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next step fusion reactors. Two main topical groups of interaction are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation and (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R&D avenues for their resolution are presented.

1,187 citations

Journal ArticleDOI
TL;DR: The National Spherical Torus Experiment (NSTX) is being built at the Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical torus (ST) concept at the MA level as discussed by the authors.
Abstract: The National Spherical Torus Experiment (NSTX) is being built at the Princeton Plasma Physics Laboratory to test the fusion physics principles for the Spherical Torus (ST) concept at the MA level. The NSTX nominal plasma parameters are R {sub 0} = 85 cm, a = 67 cm, R/a greater than or equal to 1.26, B {sub T} = 3 kG, I {sub p} = 1 MA, q {sub 95} = 14, elongation {kappa} less than or equal to 2.2, triangularity {delta} less than or equal to 0.5, and plasma pulse length of up to 5 sec. The plasma heating/current drive (CD) tools are High Harmonic Fast Wave (HHFW) (6 MW, 5 sec), Neutral Beam Injection (NBI) (5 MW, 80 keV, 5 sec), and Coaxial Helicity Injection (CHI). Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes including very high plasma beta, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well, and high pressure driven sheared flow. In addition, the NSTX program plans to explore fully noninductive plasma start-up, as well as a dispersive scrape-off layer for heat and particle flux handling.

384 citations

Journal ArticleDOI
TL;DR: The robust, robust, compact (ARC) as discussed by the authors is the product of a conceptual design study aimed at reducing the size, cost and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant.

340 citations

Journal ArticleDOI
TL;DR: Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors as mentioned in this paper, and has been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research program.
Abstract: Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium–tritium fusion neutrons (14.1 MeV compared to <2 MeV on average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme. For achieving proper safety and efficiency of future fusion power plants, low-activation materials able to withstand the extreme fusion conditions are needed. Here, the irradiation physics at play and fusion materials research is reviewed.

326 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the top technical issues and elucidates the primary challenges in developing the blanket/first wall and identified the key R&D needs in non-fusion and fusion facilities on the path to DEMO.

234 citations