scispace - formally typeset
Search or ask a question
Author

P. J. Goodford

Bio: P. J. Goodford is an academic researcher. The author has an hindex of 2, co-authored 2 publications receiving 2588 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The interaction of a probe group with a protein of known structure is computed at sample positions throughout and around the macromolecule, giving an array of energy values.
Abstract: The interaction of a probe group with a protein of known structure is computed at sample positions throughout and around the macromolecule, giving an array of energy values. The probes include water, the methyl group, amine nitrogen, carboxy oxygen, and hydroxyl. Contour surfaces at appropriate energy levels are calculated for each probe and displayed by computer graphics together with the protein structure. Contours at negative energy levels delineate contours also enable other regions of attraction between probe and protein and are found at known ligand binding clefts in particular. The contours also enable other regions of attraction to be identified and facilitate the interpretation of protein-ligand energetics. They may, therefore, be of value for drug design.

2,676 citations

Journal ArticleDOI
TL;DR: In this paper, the interaction of a probe group with a protein of known structure is computed at sample positions throughout and around the macromolecule, giving an array of energy values.
Abstract: The interaction of a probe group with a protein of known structure is computed at sample positions throughout and around the macromolecule, giving an array of energy values. The probes include water, the methyl group, amine nitrogen, carboxy oxygen, and hydroxyl. Contour surfaces at appropriate energy levels are calculated for each probe and displayed by computer graphics together with the protein structure. Contours at negative energy levels delineate contours also enable other regions of attraction between probe and protein and are found at known ligand binding clefts in particular. The contours also enable other regions of attraction to be identified and facilitate the interpretation of protein-ligand energetics. They may, therefore, be of value for drug design.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that both the traditional and Lamarckian genetic algorithms can handle ligands with more degrees of freedom than the simulated annealing method used in earlier versions of AUTODOCK, and that the Lamarckia genetic algorithm is the most efficient, reliable, and successful of the three.
Abstract: A novel and robust automated docking method that predicts the bound conformations of flexible ligands to macromolecular targets has been developed and tested, in combination with a new scoring function that estimates the free energy change upon binding. Interestingly, this method applies a Lamarckian model of genetics, in which environmental adaptations of an individual's phenotype are reverse transcribed into its genotype and become . heritable traits sic . We consider three search methods, Monte Carlo simulated annealing, a traditional genetic algorithm, and the Lamarckian genetic algorithm, and compare their performance in dockings of seven protein)ligand test systems having known three-dimensional structure. We show that both the traditional and Lamarckian genetic algorithms can handle ligands with more degrees of freedom than the simulated annealing method used in earlier versions of AUTODOCK, and that the Lamarckian genetic algorithm is the most efficient, reliable, and successful of the three. The empirical free energy function was calibrated using a set of 30 structurally known protein)ligand complexes with experimentally determined binding constants. Linear regression analysis of the observed binding constants in terms of a wide variety of structure-derived molecular properties was performed. The final model had a residual standard y1 y1 .

9,322 citations

Journal ArticleDOI
TL;DR: Key concepts and specific features of small-molecule–protein docking methods are reviewed, selected applications are highlighted and recent advances that aim to address the acknowledged limitations of established approaches are discussed.
Abstract: Computational approaches that 'dock' small molecules into the structures of macromolecular targets and 'score' their potential complementarity to binding sites are widely used in hit identification and lead optimization Indeed, there are now a number of drugs whose development was heavily influenced by or based on structure-based design and screening strategies, such as HIV protease inhibitors Nevertheless, there remain significant challenges in the application of these approaches, in particular in relation to current scoring schemes Here, we review key concepts and specific features of small-molecule-protein docking methods, highlight selected applications and discuss recent advances that aim to address the acknowledged limitations of established approaches

2,853 citations

Journal ArticleDOI
TL;DR: The authors describe the development and testing of a semiempirical free energy force field for use in AutoDock4 and similar grid‐based docking methods based on a comprehensive thermodynamic model that allows incorporation of intramolecular energies into the predicted free energy of binding.
Abstract: The authors describe the development and testing of a semiempirical free energy force field for use in AutoDock4 and similar grid-based docking methods. The force field is based on a comprehensive thermodynamic model that allows incorporation of intramolecular energies into the predicted free energy of binding. It also incorporates a charge-based method for evaluation of desolvation designed to use a typical set of atom types. The method has been calibrated on a set of 188 diverse protein-ligand complexes of known structure and binding energy, and tested on a set of 100 complexes of ligands with retroviral proteases. The force field shows improvement in redocking simulations over the previous AutoDock3 force field.

1,790 citations

Journal ArticleDOI
TL;DR: This review presents a brief introduction of the available molecular docking methods, and their development and applications in drug discovery, and a recently developed local move Monte Carlo based approach is introduced.
Abstract: Molecular docking has become an increasingly important tool for drug discovery. In this review, we present a brief introduction of the available molecular docking methods, and their development and applications in drug discovery. The relevant basic theories, including sampling algorithms and scoring functions, are summarized. The differences in and performance of available docking software are also discussed. Flexible receptor molecular docking approaches, especially those including backbone flexibility in receptors, are a challenge for available docking methods. A recently developed Local Move Monte Carlo (LMMC) based approach is introduced as a potential solution to flexible receptor docking problems. Three application examples of molecular docking approaches for drug discovery are provided.

1,787 citations

Journal ArticleDOI
03 Jun 1993-Nature
TL;DR: Two potent inhibitors based on the crystal structure of influenza virus sialidase have been designed and provide an example of the power of rational, computer-assisted drug design, indicating significant progress in the development of a new therapeutic or prophylactic treatment for influenza infection.
Abstract: Two potent inhibitors based on the crystal structure of influenza virus sialidase have been designed. These compounds are effective inhibitors not only of the enzyme, but also of the virus in cell culture and in animal models. The results provide an example of the power of rational, computer-assisted drug design, as well as indicating significant progress in the development of a new therapeutic or prophylactic treatment for influenza infection.

1,778 citations