scispace - formally typeset
Search or ask a question
Author

P. J. Van Mantgem

Bio: P. J. Van Mantgem is an academic researcher from University of California, Davis. The author has contributed to research in topics: Ecosystem & Biodiversity. The author has an hindex of 3, co-authored 3 publications receiving 717 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Little support is found for the hypothesis that there is a strong dependence of ecosystem function on the full complement of diversity within sites, and the conservation community should take a cautious view of endorsing this linkage as a model to promote conservation goals.
Abstract: We evaluate the empirical and theoretical support for the hypothesis that a large proportion of native species richness is required to maximize ecosystem stability and sustain function. This assessment is important for conservation strategies because sustenance of ecosystem functions has been used as an argument for the conservation of species. If ecosystem functions are sustained at relatively low species richness, then arguing for the conservation of ecosystem function, no matter how important in its own right, does not strongly argue for the conservation of species. Additionally, for this to be a strong conservation argument the link between species diversity and ecosystem functions of value to the human community must be clear. We review the empirical literature to quantify the support for two hypotheses: (1) species richness is positively correlated with ecosystem function, and (2) ecosystem functions do not saturate at low species richness relative to the observed or experimental diversity. Few empirical studies demonstrate improved function at high levels of species richness. Second, we analyze recent theoretical models in order to estimate the level of species richness required to maintain ecosystem function. Again we find that, within a single trophic level, most mathematical models predict saturation of ecosystem function at a low proportion of local species richness. We also analyze a theoretical model linking species number to ecosystem stability. This model predicts that species richness beyond the first few species does not typically increase ecosystem stability. One reason that high species richness may not contribute significantly to function or stability is that most communities are characterized by strong dominance such that a few species provide the vast majority of the community biomass. Rapid turnover of species may rescue the concept that diversity leads to maximum function and stability. The role of turnover in ecosystem function and stability has not been investigated. Despite the recent rush to embrace the linkage between biodiversity and ecosystem function, we find little support for the hypothesis that there is a strong dependence of ecosystem function on the full complement of diversity within sites. Given this observation, the conservation community should take a cautious view of endorsing this linkage as a model to promote conservation goals.

698 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the potential of two plant species, tall fescue (Festuca arundinacea Schreb, a forage plant) and yellow sour clover (Melilotus indica L., a naturally occuring legume species) for bioremediation of selenium laden soils.
Abstract: A study was undertaken to assess the potential of two plant species, tall fescue (Festuca arundinacea Schreb., a forage plant) and yellow sour clover (Melilotus indica L., a naturally occuring legume species) for bioremediation of selenium laden soils. Using soil columns under simulated field soil conditions, the effects of these two species were studied on soil selenium (Se) redistribution, leaching, and Se bioextraction. Both leachate volume and Se concentration in the leachate were greatly influenced by presence of vegetation. The volume of leachate was considerably lower for columns having either tall fescue or yellow sour clover plantings. Tall fescue had a higher water use rate and greater rooting density than did in yellow sour clover, indicating the tall fescue will be more practical for bioremediation of Se laden soils. Soil Se distribution analysis yielded the following patterns: (1) contamination of the lower soil profile of uncontaminated soil occurred at the first harvest, but Se concentrations at these depths were not at high levels; (2) except for selenite, all forms of water-extractable soil Se concentrations showed a clear reduction over time of vegetation harvest; and (3) the reductions of total soil Se were significant, but the difference was relatively small between the forage planting and bare soil treatments. This is due to the fact that only a relatively small fraction of total Se inventory was water soluble and available to plants at any one time. A large reduction may become apparent after a longer period of forage plant management.

42 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations

Journal ArticleDOI
26 Oct 2001-Science
TL;DR: Larger numbers of species are probably needed to reduce temporal variability in ecosystem processes in changing environments and to determine how biodiversity dynamics, ecosystem processes, and abiotic factors interact.
Abstract: The ecological consequences of biodiversity loss have aroused considerable interest and controversy during the past decade. Major advances have been made in describing the relationship between species diversity and ecosystem processes, in identifying functionally important species, and in revealing underlying mechanisms. There is, however, uncertainty as to how results obtained in recent experiments scale up to landscape and regional levels and generalize across ecosystem types and processes. Larger numbers of species are probably needed to reduce temporal variability in ecosystem processes in changing environments. A major future challenge is to determine how biodiversity dynamics, ecosystem processes, and abiotic factors interact.

4,070 citations

Journal ArticleDOI
TL;DR: Crossfertilization between approaches based on species richness on the one hand, and on functional traits and types on the other, is a promising way of gaining mechanistic insight into the links between plant diversity and ecosystem processes and contributing to practical management for the conservation of diversity andcosystem services.
Abstract: The links between plant diversity and ecosystem functioning remain highly controversial. There is a growing consensus, however, that functional diversity, or the value and range of species traits, rather than species numbers per se, strongly determines ecosystem functioning. Despite its importance, and the fact that species diversity is often an inadequate surrogate, functional diversity has been studied in relatively few cases. Approaches based on species richness on the one hand, and on functional traits and types on the other, have been extremely productive in recent years, but attempts to connect their findings have been rare. Crossfertilization between these two approaches is a promising way of gaining mechanistic insight into the links between plant diversity and ecosystem processes and contributing to practical management for the conservation of diversity and ecosystem services.

2,756 citations

Journal ArticleDOI
TL;DR: In this article, the authors extended previous rarefaction and extrapolation models for species richness (Hill number q D, where q ¼ 0) to measures of taxon diversity incorporating relative abundance (i.e., for any Hill number qD, q. 0) and presented a unified approach for both individual-based (abundance) data and sample-based data.
Abstract: Quantifying and assessing changes in biological diversity are central aspects of many ecological studies, yet accurate methods of estimating biological diversity from sampling data have been elusive. Hill numbers, or the effective number of species, are increasingly used to characterize the taxonomic, phylogenetic, or functional diversity of an assemblage. However, empirical estimates of Hill numbers, including species richness, tend to be an increasing function of sampling effort and, thus, tend to increase with sample completeness. Integrated curves based on sampling theory that smoothly link rarefaction (interpolation) and prediction (extrapolation) standardize samples on the basis of sample size or sample completeness and facilitate the comparison of biodiversity data. Here we extended previous rarefaction and extrapolation models for species richness (Hill number q D, where q ¼ 0) to measures of taxon diversity incorporating relative abundance (i.e., for any Hill number q D, q . 0) and present a unified approach for both individual-based (abundance) data and sample- based (incidence) data. Using this unified sampling framework, we derive both theoretical formulas and analytic estimators for seamless rarefaction and extrapolation based on Hill numbers. Detailed examples are provided for the first three Hill numbers: q ¼ 0 (species richness), q ¼ 1 (the exponential of Shannon's entropy index), and q ¼ 2 (the inverse of Simpson's concentration index). We developed a bootstrap method for constructing confidence intervals around Hill numbers, facilitating the comparison of multiple assemblages of both rarefied and extrapolated samples. The proposed estimators are accurate for both rarefaction and short-range extrapolation. For long-range extrapolation, the performance of the estimators depends on both the value of q and on the extrapolation range. We tested our methods on simulated data generated from species abundance models and on data from large species inventories. We also illustrate the formulas and estimators using empirical data sets from biodiversity surveys of temperate forest spiders and tropical ants.

2,182 citations

Journal ArticleDOI
26 Oct 2006-Nature
TL;DR: A formal meta-analysis of studies that have experimentally manipulated species diversity to examine how it affects the functioning of numerous trophic groups in multiple types of ecosystem suggests that the average effect of decreasing species richness is to decrease the abundance or biomass of the focal Trophic group, leading to less complete depletion of resources used by that group.
Abstract: Over the past decade, accelerating rates of species extinction have prompted an increasing number of studies to reduce species diversityexperimentallyandexaminehowthisalterstheefficiency by which communities capture resources and convert those into biomass 1,2 . So far, the generality of patterns and processes observed in individual studies have been the subjects of considerable debate 3–7 .Here wepresent aformal meta-analysis of studies thathaveexperimentallymanipulatedspeciesdiversitytoexamine how it affects the functioning of numerous trophic groups in multiple types of ecosystem. We show that the average effect of decreasing species richness is to decrease the abundance or biomass of the focal trophic group, leading to less complete depletion of resources used by that group. At the same time, analyses reveal that the standing stock of, and resource depletion by, the most species-rich polyculture tends to be no different from that of the single most productive species used in an experiment. Of the known mechanisms that might explain these trends, results are most consistent with what is called the ‘sampling effect’, which occurs when diverse communities are more likely to contain and become dominated by the most productive species. Whether this mechanism is widespread in natural communities is currently controversial. Patterns we report are remarkably consistent for four different trophic groups (producers, herbivores, detritivores and predators) and two major ecosystem types (aquatic and terrestrial). Collectively, ouranalysessuggestthat theaverage species loss does indeed affect the functioning of a wide variety of organisms and ecosystems, but the magnitude of these effects is ultimatelydeterminedbytheidentityofspeciesthataregoingextinct.

1,691 citations